Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

A sphere has a volume of 36 in³. Find the radius of the sphere. (Round to the nearest whole number)

Sagot :

To find the radius of a sphere given its volume, we need to use the formula for the volume of a sphere:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]

In this formula, [tex]\( V \)[/tex] represents the volume, and [tex]\( r \)[/tex] represents the radius.

Given:
[tex]\[ V = 36 \, \text{in}^3 \][/tex]

We need to solve for [tex]\( r \)[/tex]:

1. Start with the volume formula:
[tex]\[ 36 = \frac{4}{3} \pi r^3 \][/tex]

2. Rearrange the formula to solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{36}{\frac{4}{3} \pi} \][/tex]

3. Simplify:
[tex]\[ r^3 = \frac{36 \times 3}{4 \pi} \][/tex]
[tex]\[ r^3 = \frac{108}{4 \pi} \][/tex]
[tex]\[ r^3 = \frac{27}{\pi} \][/tex]

4. To find [tex]\( r \)[/tex], we take the cube root of both sides:
[tex]\[ r = \sqrt[3]{\frac{27}{\pi}} \][/tex]

5. Calculate the value:
[tex]\[ r \approx 2.048352189765887 \][/tex]

6. Round the result to the nearest whole number:
[tex]\[ r \approx 2 \][/tex]

Therefore, the radius of the sphere, rounded to the nearest whole number, is [tex]\( 2 \)[/tex] inches.