At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Fiona wrote the predicted and residual values for a data set using the line of best fit [tex]\( y = 3.71x - 8.85 \)[/tex].

[tex]\[
\begin{tabular}{|c|c|c|c|}
\hline
x & Given & Predicted & Residual \\
\hline
1 & -5.1 & -5.14 & 0.04 \\
\hline
2 & -1.3 & -1.43 & -0.13 \\
\hline
3 & 1.9 & 2.28 & -0.38 \\
\hline
4 & 6.2 & 5.99 & 0.21 \\
\hline
\end{tabular}
\][/tex]

Which statements are true about the table? Select three options.

A. The data point for [tex]\( x=1 \)[/tex] is above the line of best fit.

B. The residual value for [tex]\( x=3 \)[/tex] should be a positive number because the data point is above the line of best fit.

C. Fiona made a subtraction error when she computed the residual value for [tex]\( x=4 \)[/tex].

D. The residual value for [tex]\( x=2 \)[/tex] should be a positive number because the given point is above the line of best fit.

E. The residual value for [tex]\( x=3 \)[/tex] is negative because the given point is below the line of best fit.


Sagot :

To determine which statements are true about the given table, let's analyze each statement one by one based on the provided data points, predicted values, and residuals.

### Given Data
1. [tex]\( x = 1 \)[/tex] : Given = -5.1, Predicted = -5.14, Residual = 0.04
2. [tex]\( x = 2 \)[/tex] : Given = -1.3, Predicted = -1.43, Residual = -0.13
3. [tex]\( x = 3 \)[/tex] : Given = 1.9, Predicted = 2.28, Residual = -0.38
4. [tex]\( x = 4 \)[/tex] : Given = 6.2, Predicted = 5.99, Residual = 0.21

### Statements Analysis

#### Statement 1:
The data point for [tex]\( x = 1 \)[/tex] is above the line of best fit.
- To determine this, consider the residual value for [tex]\( x = 1 \)[/tex].
- Residual [tex]\( = \text{Given} - \text{Predicted} = -5.1 - (-5.14) = -5.1 + 5.14 = 0.04 \)[/tex]
- Since the residual is positive (0.04), the data point for [tex]\( x = 1 \)[/tex] is above the line of best fit.

Conclusion: True

#### Statement 2:
The residual value for [tex]\( x = 3 \)[/tex] should be a positive number because the data point is above the line of best fit.
- Residual for [tex]\( x = 3 \)[/tex] is given as -0.38.
- A positive residual would imply that the data point is above the line of best fit, but here the residual is negative (-0.38), indicating the point is below the line.

Conclusion: False

#### Statement 3:
Fiona made a subtraction error when she computed the residual value for [tex]\( x = 4 \)[/tex].
- Let's calculate the residual for [tex]\( x = 4 \)[/tex]:
- Residual [tex]\( = \text{Given} - \text{Predicted} = 6.2 - 5.99 = 0.21 \)[/tex].
- The correct residual should be exactly 0.21, but if we calculate the difference, we find it to be approximately [tex]\( 0.20999999999999996 \)[/tex] due to floating-point precision issues, but it is effectively 0.21.

Conclusion: False (no error in computation if we consider typical precision)

#### Statement 4:
The residual value for [tex]\( x = 2 \)[/tex] should be a positive number because the given point is above the line of best fit.
- Residual for [tex]\( x = 2 \)[/tex] is -0.13.
- A positive residual indicates above the line, but the given residual is negative (-0.13), indicating the point is below the line.

Conclusion: False

#### Statement 5:
The residual value for [tex]\( x = 3 \)[/tex] is negative because the given point is below the line of best fit.
- Residual for [tex]\( x = 3 \)[/tex] is -0.38.
- A negative residual corresponds to the data point being below the line of best fit.

Conclusion: True

### Final Conclusions
The three true statements are:
1. The data point for [tex]\( x = 1 \)[/tex] is above the line of best fit.
2. Fiona made a subtraction error when she computed the residual value for [tex]\( x = 4 \)[/tex].
3. The residual value for [tex]\( x = 3 \)[/tex] is negative because the given point is below the line of best fit.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.