Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's break down the solution to each part of the question step-by-step.
### 1. Finding the Solutions of the Equation [tex]\( x^2 - 2x - 4 = -3x + 9 \)[/tex]
To find the solutions, we first set [tex]\( x^2 - 2x - 4 \)[/tex] equal to [tex]\(-3x + 9\)[/tex].
[tex]\[ x^2 - 2x - 4 = -3x + 9 \][/tex]
Rearrange the equation to set it to zero:
[tex]\[ x^2 - 2x - 4 + 3x - 9 = 0 \][/tex]
Combine like terms:
[tex]\[ x^2 + x - 13 = 0 \][/tex]
Now, solve for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -13 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-13)}}{2(1)} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{1 + 52}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{53}}{2} \][/tex]
The solutions are:
[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]
### 2. Finding the [tex]\( y \)[/tex]-coordinates of the [tex]\( y \)[/tex]-intercepts
For [tex]\( y = x^2 - 2x - 4 \)[/tex], set [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0^2 - 2(0) - 4 = -4 \][/tex]
For [tex]\( y = -3x + 9 \)[/tex], set [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -3(0) + 9 = 9 \][/tex]
So, the [tex]\( y \)[/tex]-coordinates of the y-intercepts are:
[tex]\[ y = -4 \quad \text{and} \quad y = 9 \][/tex]
### 3. Finding the [tex]\( x \)[/tex]-coordinates of the [tex]\( x \)[/tex]-intercepts
For the quadratic [tex]\( y = x^2 - 2x - 4 \)[/tex], set [tex]\( y = 0 \)[/tex]:
[tex]\[ x^2 - 2x - 4 = 0 \][/tex]
Solve for [tex]\( x \)[/tex] using the quadratic formula:
[tex]\[ x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-4)}}{2(1)} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{4 + 16}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{20}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm 2\sqrt{5}}{2} \][/tex]
[tex]\[ x = 1 \pm \sqrt{5} \][/tex]
So, the [tex]\( x \)[/tex]-coordinates of the x-intercepts are:
[tex]\[ x = 1 + \sqrt{5} \quad \text{and} \quad x = 1 - \sqrt{5} \][/tex]
For the linear equation [tex]\( y = -3x + 9 \)[/tex], set [tex]\( y = 0 \)[/tex]:
[tex]\[ -3x + 9 = 0 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ -3x = -9 \][/tex]
[tex]\[ x = 3 \][/tex]
So, the [tex]\( x \)[/tex]-coordinate of the x-intercept is:
[tex]\[ x = 3 \][/tex]
### 4. Finding the [tex]\( y \)[/tex]-coordinates of the Intersection Points
To find the [tex]\( y \)[/tex]-coordinates of the intersection points, we already have the [tex]\( x \)[/tex]-coordinates of the intersection points from solving [tex]\( x = \frac{-1 + \sqrt{53}}{2} \)[/tex] and [tex]\( x = \frac{-1 - \sqrt{53}}{2} \)[/tex]:
Substitute these [tex]\( x \)[/tex]-values back into either equation, such as [tex]\( y = x^2 - 2x - 4 \)[/tex].
For [tex]\( x = \frac{-1 + \sqrt{53}}{2} \)[/tex]:
[tex]\[ y = \left( \frac{-1 + \sqrt{53}}{2} \right)^2 - 2\left( \frac{-1 + \sqrt{53}}{2} \right) - 4 \][/tex]
[tex]\[ y \approx -0.420164833920778 \][/tex]
For [tex]\( x = \frac{-1 - \sqrt{53}}{2} \)[/tex]:
[tex]\[ y = \left( \frac{-1 - \sqrt{53}}{2} \right)^2 - 2\left( \frac{-1 - \sqrt{53}}{2} \right) - 4 \][/tex]
[tex]\[ y \approx 21.4201648339208 \][/tex]
So, the approximate [tex]\( y \)[/tex]-coordinates of the intersection points are:
[tex]\[ y \approx -0.420164833920778 \quad \text{and} \quad y \approx 21.4201648339208 \][/tex]
### 5. Finding the [tex]\( x \)[/tex]-coordinates of the Intersection Points
The [tex]\( x \)[/tex]-coordinates of the intersection points are:
[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]
In summary:
- The solutions [tex]\( x \)[/tex]-coordinates: [tex]\( x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \)[/tex].
- The [tex]\( y \)[/tex]-coordinates of the [tex]\( y \)[/tex]-intercepts are [tex]\( -4 \)[/tex] and [tex]\( 9 \)[/tex].
- The [tex]\( x \)[/tex]-coordinates of the [tex]\( x \)[/tex]-intercepts are [tex]\( 1 + \sqrt{5} \)[/tex], [tex]\( 1 - \sqrt{5} \)[/tex], and [tex]\( 3 \)[/tex].
- The [tex]\( y \)[/tex]-coordinates of the intersection points are approximately [tex]\( -0.420164833920778 \)[/tex] and [tex]\( 21.4201648339208 \)[/tex].
- The [tex]\( x \)[/tex]-coordinates of the intersection points are [tex]\( \frac{-1 + \sqrt{53}}{2} \)[/tex] and [tex]\( \frac{-1 - \sqrt{53}}{2} \)[/tex].
### 1. Finding the Solutions of the Equation [tex]\( x^2 - 2x - 4 = -3x + 9 \)[/tex]
To find the solutions, we first set [tex]\( x^2 - 2x - 4 \)[/tex] equal to [tex]\(-3x + 9\)[/tex].
[tex]\[ x^2 - 2x - 4 = -3x + 9 \][/tex]
Rearrange the equation to set it to zero:
[tex]\[ x^2 - 2x - 4 + 3x - 9 = 0 \][/tex]
Combine like terms:
[tex]\[ x^2 + x - 13 = 0 \][/tex]
Now, solve for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -13 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-13)}}{2(1)} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{1 + 52}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{53}}{2} \][/tex]
The solutions are:
[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]
### 2. Finding the [tex]\( y \)[/tex]-coordinates of the [tex]\( y \)[/tex]-intercepts
For [tex]\( y = x^2 - 2x - 4 \)[/tex], set [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0^2 - 2(0) - 4 = -4 \][/tex]
For [tex]\( y = -3x + 9 \)[/tex], set [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -3(0) + 9 = 9 \][/tex]
So, the [tex]\( y \)[/tex]-coordinates of the y-intercepts are:
[tex]\[ y = -4 \quad \text{and} \quad y = 9 \][/tex]
### 3. Finding the [tex]\( x \)[/tex]-coordinates of the [tex]\( x \)[/tex]-intercepts
For the quadratic [tex]\( y = x^2 - 2x - 4 \)[/tex], set [tex]\( y = 0 \)[/tex]:
[tex]\[ x^2 - 2x - 4 = 0 \][/tex]
Solve for [tex]\( x \)[/tex] using the quadratic formula:
[tex]\[ x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-4)}}{2(1)} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{4 + 16}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{20}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm 2\sqrt{5}}{2} \][/tex]
[tex]\[ x = 1 \pm \sqrt{5} \][/tex]
So, the [tex]\( x \)[/tex]-coordinates of the x-intercepts are:
[tex]\[ x = 1 + \sqrt{5} \quad \text{and} \quad x = 1 - \sqrt{5} \][/tex]
For the linear equation [tex]\( y = -3x + 9 \)[/tex], set [tex]\( y = 0 \)[/tex]:
[tex]\[ -3x + 9 = 0 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ -3x = -9 \][/tex]
[tex]\[ x = 3 \][/tex]
So, the [tex]\( x \)[/tex]-coordinate of the x-intercept is:
[tex]\[ x = 3 \][/tex]
### 4. Finding the [tex]\( y \)[/tex]-coordinates of the Intersection Points
To find the [tex]\( y \)[/tex]-coordinates of the intersection points, we already have the [tex]\( x \)[/tex]-coordinates of the intersection points from solving [tex]\( x = \frac{-1 + \sqrt{53}}{2} \)[/tex] and [tex]\( x = \frac{-1 - \sqrt{53}}{2} \)[/tex]:
Substitute these [tex]\( x \)[/tex]-values back into either equation, such as [tex]\( y = x^2 - 2x - 4 \)[/tex].
For [tex]\( x = \frac{-1 + \sqrt{53}}{2} \)[/tex]:
[tex]\[ y = \left( \frac{-1 + \sqrt{53}}{2} \right)^2 - 2\left( \frac{-1 + \sqrt{53}}{2} \right) - 4 \][/tex]
[tex]\[ y \approx -0.420164833920778 \][/tex]
For [tex]\( x = \frac{-1 - \sqrt{53}}{2} \)[/tex]:
[tex]\[ y = \left( \frac{-1 - \sqrt{53}}{2} \right)^2 - 2\left( \frac{-1 - \sqrt{53}}{2} \right) - 4 \][/tex]
[tex]\[ y \approx 21.4201648339208 \][/tex]
So, the approximate [tex]\( y \)[/tex]-coordinates of the intersection points are:
[tex]\[ y \approx -0.420164833920778 \quad \text{and} \quad y \approx 21.4201648339208 \][/tex]
### 5. Finding the [tex]\( x \)[/tex]-coordinates of the Intersection Points
The [tex]\( x \)[/tex]-coordinates of the intersection points are:
[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]
In summary:
- The solutions [tex]\( x \)[/tex]-coordinates: [tex]\( x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \)[/tex].
- The [tex]\( y \)[/tex]-coordinates of the [tex]\( y \)[/tex]-intercepts are [tex]\( -4 \)[/tex] and [tex]\( 9 \)[/tex].
- The [tex]\( x \)[/tex]-coordinates of the [tex]\( x \)[/tex]-intercepts are [tex]\( 1 + \sqrt{5} \)[/tex], [tex]\( 1 - \sqrt{5} \)[/tex], and [tex]\( 3 \)[/tex].
- The [tex]\( y \)[/tex]-coordinates of the intersection points are approximately [tex]\( -0.420164833920778 \)[/tex] and [tex]\( 21.4201648339208 \)[/tex].
- The [tex]\( x \)[/tex]-coordinates of the intersection points are [tex]\( \frac{-1 + \sqrt{53}}{2} \)[/tex] and [tex]\( \frac{-1 - \sqrt{53}}{2} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.