Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's break down the solution to each part of the question step-by-step.
### 1. Finding the Solutions of the Equation [tex]\( x^2 - 2x - 4 = -3x + 9 \)[/tex]
To find the solutions, we first set [tex]\( x^2 - 2x - 4 \)[/tex] equal to [tex]\(-3x + 9\)[/tex].
[tex]\[ x^2 - 2x - 4 = -3x + 9 \][/tex]
Rearrange the equation to set it to zero:
[tex]\[ x^2 - 2x - 4 + 3x - 9 = 0 \][/tex]
Combine like terms:
[tex]\[ x^2 + x - 13 = 0 \][/tex]
Now, solve for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -13 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-13)}}{2(1)} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{1 + 52}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{53}}{2} \][/tex]
The solutions are:
[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]
### 2. Finding the [tex]\( y \)[/tex]-coordinates of the [tex]\( y \)[/tex]-intercepts
For [tex]\( y = x^2 - 2x - 4 \)[/tex], set [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0^2 - 2(0) - 4 = -4 \][/tex]
For [tex]\( y = -3x + 9 \)[/tex], set [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -3(0) + 9 = 9 \][/tex]
So, the [tex]\( y \)[/tex]-coordinates of the y-intercepts are:
[tex]\[ y = -4 \quad \text{and} \quad y = 9 \][/tex]
### 3. Finding the [tex]\( x \)[/tex]-coordinates of the [tex]\( x \)[/tex]-intercepts
For the quadratic [tex]\( y = x^2 - 2x - 4 \)[/tex], set [tex]\( y = 0 \)[/tex]:
[tex]\[ x^2 - 2x - 4 = 0 \][/tex]
Solve for [tex]\( x \)[/tex] using the quadratic formula:
[tex]\[ x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-4)}}{2(1)} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{4 + 16}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{20}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm 2\sqrt{5}}{2} \][/tex]
[tex]\[ x = 1 \pm \sqrt{5} \][/tex]
So, the [tex]\( x \)[/tex]-coordinates of the x-intercepts are:
[tex]\[ x = 1 + \sqrt{5} \quad \text{and} \quad x = 1 - \sqrt{5} \][/tex]
For the linear equation [tex]\( y = -3x + 9 \)[/tex], set [tex]\( y = 0 \)[/tex]:
[tex]\[ -3x + 9 = 0 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ -3x = -9 \][/tex]
[tex]\[ x = 3 \][/tex]
So, the [tex]\( x \)[/tex]-coordinate of the x-intercept is:
[tex]\[ x = 3 \][/tex]
### 4. Finding the [tex]\( y \)[/tex]-coordinates of the Intersection Points
To find the [tex]\( y \)[/tex]-coordinates of the intersection points, we already have the [tex]\( x \)[/tex]-coordinates of the intersection points from solving [tex]\( x = \frac{-1 + \sqrt{53}}{2} \)[/tex] and [tex]\( x = \frac{-1 - \sqrt{53}}{2} \)[/tex]:
Substitute these [tex]\( x \)[/tex]-values back into either equation, such as [tex]\( y = x^2 - 2x - 4 \)[/tex].
For [tex]\( x = \frac{-1 + \sqrt{53}}{2} \)[/tex]:
[tex]\[ y = \left( \frac{-1 + \sqrt{53}}{2} \right)^2 - 2\left( \frac{-1 + \sqrt{53}}{2} \right) - 4 \][/tex]
[tex]\[ y \approx -0.420164833920778 \][/tex]
For [tex]\( x = \frac{-1 - \sqrt{53}}{2} \)[/tex]:
[tex]\[ y = \left( \frac{-1 - \sqrt{53}}{2} \right)^2 - 2\left( \frac{-1 - \sqrt{53}}{2} \right) - 4 \][/tex]
[tex]\[ y \approx 21.4201648339208 \][/tex]
So, the approximate [tex]\( y \)[/tex]-coordinates of the intersection points are:
[tex]\[ y \approx -0.420164833920778 \quad \text{and} \quad y \approx 21.4201648339208 \][/tex]
### 5. Finding the [tex]\( x \)[/tex]-coordinates of the Intersection Points
The [tex]\( x \)[/tex]-coordinates of the intersection points are:
[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]
In summary:
- The solutions [tex]\( x \)[/tex]-coordinates: [tex]\( x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \)[/tex].
- The [tex]\( y \)[/tex]-coordinates of the [tex]\( y \)[/tex]-intercepts are [tex]\( -4 \)[/tex] and [tex]\( 9 \)[/tex].
- The [tex]\( x \)[/tex]-coordinates of the [tex]\( x \)[/tex]-intercepts are [tex]\( 1 + \sqrt{5} \)[/tex], [tex]\( 1 - \sqrt{5} \)[/tex], and [tex]\( 3 \)[/tex].
- The [tex]\( y \)[/tex]-coordinates of the intersection points are approximately [tex]\( -0.420164833920778 \)[/tex] and [tex]\( 21.4201648339208 \)[/tex].
- The [tex]\( x \)[/tex]-coordinates of the intersection points are [tex]\( \frac{-1 + \sqrt{53}}{2} \)[/tex] and [tex]\( \frac{-1 - \sqrt{53}}{2} \)[/tex].
### 1. Finding the Solutions of the Equation [tex]\( x^2 - 2x - 4 = -3x + 9 \)[/tex]
To find the solutions, we first set [tex]\( x^2 - 2x - 4 \)[/tex] equal to [tex]\(-3x + 9\)[/tex].
[tex]\[ x^2 - 2x - 4 = -3x + 9 \][/tex]
Rearrange the equation to set it to zero:
[tex]\[ x^2 - 2x - 4 + 3x - 9 = 0 \][/tex]
Combine like terms:
[tex]\[ x^2 + x - 13 = 0 \][/tex]
Now, solve for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -13 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-13)}}{2(1)} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{1 + 52}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{53}}{2} \][/tex]
The solutions are:
[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]
### 2. Finding the [tex]\( y \)[/tex]-coordinates of the [tex]\( y \)[/tex]-intercepts
For [tex]\( y = x^2 - 2x - 4 \)[/tex], set [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0^2 - 2(0) - 4 = -4 \][/tex]
For [tex]\( y = -3x + 9 \)[/tex], set [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -3(0) + 9 = 9 \][/tex]
So, the [tex]\( y \)[/tex]-coordinates of the y-intercepts are:
[tex]\[ y = -4 \quad \text{and} \quad y = 9 \][/tex]
### 3. Finding the [tex]\( x \)[/tex]-coordinates of the [tex]\( x \)[/tex]-intercepts
For the quadratic [tex]\( y = x^2 - 2x - 4 \)[/tex], set [tex]\( y = 0 \)[/tex]:
[tex]\[ x^2 - 2x - 4 = 0 \][/tex]
Solve for [tex]\( x \)[/tex] using the quadratic formula:
[tex]\[ x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-4)}}{2(1)} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{4 + 16}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{20}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm 2\sqrt{5}}{2} \][/tex]
[tex]\[ x = 1 \pm \sqrt{5} \][/tex]
So, the [tex]\( x \)[/tex]-coordinates of the x-intercepts are:
[tex]\[ x = 1 + \sqrt{5} \quad \text{and} \quad x = 1 - \sqrt{5} \][/tex]
For the linear equation [tex]\( y = -3x + 9 \)[/tex], set [tex]\( y = 0 \)[/tex]:
[tex]\[ -3x + 9 = 0 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ -3x = -9 \][/tex]
[tex]\[ x = 3 \][/tex]
So, the [tex]\( x \)[/tex]-coordinate of the x-intercept is:
[tex]\[ x = 3 \][/tex]
### 4. Finding the [tex]\( y \)[/tex]-coordinates of the Intersection Points
To find the [tex]\( y \)[/tex]-coordinates of the intersection points, we already have the [tex]\( x \)[/tex]-coordinates of the intersection points from solving [tex]\( x = \frac{-1 + \sqrt{53}}{2} \)[/tex] and [tex]\( x = \frac{-1 - \sqrt{53}}{2} \)[/tex]:
Substitute these [tex]\( x \)[/tex]-values back into either equation, such as [tex]\( y = x^2 - 2x - 4 \)[/tex].
For [tex]\( x = \frac{-1 + \sqrt{53}}{2} \)[/tex]:
[tex]\[ y = \left( \frac{-1 + \sqrt{53}}{2} \right)^2 - 2\left( \frac{-1 + \sqrt{53}}{2} \right) - 4 \][/tex]
[tex]\[ y \approx -0.420164833920778 \][/tex]
For [tex]\( x = \frac{-1 - \sqrt{53}}{2} \)[/tex]:
[tex]\[ y = \left( \frac{-1 - \sqrt{53}}{2} \right)^2 - 2\left( \frac{-1 - \sqrt{53}}{2} \right) - 4 \][/tex]
[tex]\[ y \approx 21.4201648339208 \][/tex]
So, the approximate [tex]\( y \)[/tex]-coordinates of the intersection points are:
[tex]\[ y \approx -0.420164833920778 \quad \text{and} \quad y \approx 21.4201648339208 \][/tex]
### 5. Finding the [tex]\( x \)[/tex]-coordinates of the Intersection Points
The [tex]\( x \)[/tex]-coordinates of the intersection points are:
[tex]\[ x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \][/tex]
In summary:
- The solutions [tex]\( x \)[/tex]-coordinates: [tex]\( x = \frac{-1 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{53}}{2} \)[/tex].
- The [tex]\( y \)[/tex]-coordinates of the [tex]\( y \)[/tex]-intercepts are [tex]\( -4 \)[/tex] and [tex]\( 9 \)[/tex].
- The [tex]\( x \)[/tex]-coordinates of the [tex]\( x \)[/tex]-intercepts are [tex]\( 1 + \sqrt{5} \)[/tex], [tex]\( 1 - \sqrt{5} \)[/tex], and [tex]\( 3 \)[/tex].
- The [tex]\( y \)[/tex]-coordinates of the intersection points are approximately [tex]\( -0.420164833920778 \)[/tex] and [tex]\( 21.4201648339208 \)[/tex].
- The [tex]\( x \)[/tex]-coordinates of the intersection points are [tex]\( \frac{-1 + \sqrt{53}}{2} \)[/tex] and [tex]\( \frac{-1 - \sqrt{53}}{2} \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.