Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve for the roots of the function [tex]\( f(x) = (x-6)^2(x+2)^2 \)[/tex], we need to set the function equal to zero and find the values of [tex]\( x \)[/tex] that satisfy this equation. The function is zero when any of its factors are zero.
First, let's identify the factors and set them equal to zero:
[tex]\[ f(x) = (x-6)^2(x+2)^2 = 0 \][/tex]
The function will be zero if either of these factors is zero:
1. [tex]\((x-6)^2 = 0\)[/tex]
2. [tex]\((x+2)^2 = 0\)[/tex]
Solving these equations individually:
1. [tex]\((x-6)^2 = 0\)[/tex]
Solving [tex]\((x-6)^2 = 0\)[/tex], we take the square root of both sides:
[tex]\[ x - 6 = 0 \][/tex]
Therefore,
[tex]\[ x = 6 \][/tex]
The factor [tex]\((x-6)^2\)[/tex] indicates that the root [tex]\( x = 6 \)[/tex] has multiplicity 2 because the exponent of the factor is 2.
2. [tex]\((x+2)^2 = 0\)[/tex]
Solving [tex]\((x+2)^2 = 0\)[/tex], we take the square root of both sides:
[tex]\[ x + 2 = 0 \][/tex]
Therefore,
[tex]\[ x = -2 \][/tex]
Similarly, the factor [tex]\((x+2)^2\)[/tex] indicates that the root [tex]\( x = -2 \)[/tex] has multiplicity 2 because the exponent of the factor is 2.
Thus, the roots of the function [tex]\( f(x) = (x-6)^2(x+2)^2 \)[/tex] are:
- The root [tex]\( x = 6 \)[/tex] with multiplicity 2.
- The root [tex]\( x = -2 \)[/tex] with multiplicity 2.
Hence, the correct answers are:
- [tex]\( 6 \)[/tex] with multiplicity 2
- [tex]\(-2 \)[/tex] with multiplicity 2
First, let's identify the factors and set them equal to zero:
[tex]\[ f(x) = (x-6)^2(x+2)^2 = 0 \][/tex]
The function will be zero if either of these factors is zero:
1. [tex]\((x-6)^2 = 0\)[/tex]
2. [tex]\((x+2)^2 = 0\)[/tex]
Solving these equations individually:
1. [tex]\((x-6)^2 = 0\)[/tex]
Solving [tex]\((x-6)^2 = 0\)[/tex], we take the square root of both sides:
[tex]\[ x - 6 = 0 \][/tex]
Therefore,
[tex]\[ x = 6 \][/tex]
The factor [tex]\((x-6)^2\)[/tex] indicates that the root [tex]\( x = 6 \)[/tex] has multiplicity 2 because the exponent of the factor is 2.
2. [tex]\((x+2)^2 = 0\)[/tex]
Solving [tex]\((x+2)^2 = 0\)[/tex], we take the square root of both sides:
[tex]\[ x + 2 = 0 \][/tex]
Therefore,
[tex]\[ x = -2 \][/tex]
Similarly, the factor [tex]\((x+2)^2\)[/tex] indicates that the root [tex]\( x = -2 \)[/tex] has multiplicity 2 because the exponent of the factor is 2.
Thus, the roots of the function [tex]\( f(x) = (x-6)^2(x+2)^2 \)[/tex] are:
- The root [tex]\( x = 6 \)[/tex] with multiplicity 2.
- The root [tex]\( x = -2 \)[/tex] with multiplicity 2.
Hence, the correct answers are:
- [tex]\( 6 \)[/tex] with multiplicity 2
- [tex]\(-2 \)[/tex] with multiplicity 2
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.