At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's analyze the given expression [tex]\(\frac{b^n}{b^n}\)[/tex].
1. Understanding the Expression:
The problem requires us to simplify the fraction [tex]\(\frac{b^n}{b^n}\)[/tex].
2. Applying the Law of Exponents:
In order to simplify the expression [tex]\(\frac{b^n}{b^n}\)[/tex], we need to apply the properties of exponents. One key property is that when you divide two exponential expressions with the same base, you subtract the exponents:
[tex]\[ \frac{b^m}{b^n} = b^{m-n} \][/tex]
In our case, both the numerator and the denominator have the same exponent [tex]\(n\)[/tex]. Thus, we can write:
[tex]\[ \frac{b^n}{b^n} = b^{n-n} \][/tex]
3. Simplifying the Exponent:
Simplifying the exponent [tex]\(n-n\)[/tex] gives:
[tex]\[ n - n = 0 \][/tex]
Therefore, we get:
[tex]\[ b^{n-n} = b^0 \][/tex]
4. Using Another Property of Exponents:
Another important property of exponents tells us that any non-zero number raised to the power of 0 equals 1. Hence:
[tex]\[ b^0 = 1 \][/tex]
As a result, the expression [tex]\(\frac{b^n}{b^n}\)[/tex] simplifies to 1.
Conclusion:
The expression equivalent to [tex]\(\frac{b^n}{b^n}\)[/tex] is always equal to 1, which means none of the given options [tex]\(A, B, C, D\)[/tex] correctly represents [tex]\(\frac{b^n}{b^n}\)[/tex] because the given answer simplifies to 1. However, if [tex]\(b^{n-n}\)[/tex] were presented as one of the options, it would be the correct simplified form in terms of exponents.
1. Understanding the Expression:
The problem requires us to simplify the fraction [tex]\(\frac{b^n}{b^n}\)[/tex].
2. Applying the Law of Exponents:
In order to simplify the expression [tex]\(\frac{b^n}{b^n}\)[/tex], we need to apply the properties of exponents. One key property is that when you divide two exponential expressions with the same base, you subtract the exponents:
[tex]\[ \frac{b^m}{b^n} = b^{m-n} \][/tex]
In our case, both the numerator and the denominator have the same exponent [tex]\(n\)[/tex]. Thus, we can write:
[tex]\[ \frac{b^n}{b^n} = b^{n-n} \][/tex]
3. Simplifying the Exponent:
Simplifying the exponent [tex]\(n-n\)[/tex] gives:
[tex]\[ n - n = 0 \][/tex]
Therefore, we get:
[tex]\[ b^{n-n} = b^0 \][/tex]
4. Using Another Property of Exponents:
Another important property of exponents tells us that any non-zero number raised to the power of 0 equals 1. Hence:
[tex]\[ b^0 = 1 \][/tex]
As a result, the expression [tex]\(\frac{b^n}{b^n}\)[/tex] simplifies to 1.
Conclusion:
The expression equivalent to [tex]\(\frac{b^n}{b^n}\)[/tex] is always equal to 1, which means none of the given options [tex]\(A, B, C, D\)[/tex] correctly represents [tex]\(\frac{b^n}{b^n}\)[/tex] because the given answer simplifies to 1. However, if [tex]\(b^{n-n}\)[/tex] were presented as one of the options, it would be the correct simplified form in terms of exponents.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.