Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's analyze the given expression [tex]\(\frac{b^n}{b^n}\)[/tex].
1. Understanding the Expression:
The problem requires us to simplify the fraction [tex]\(\frac{b^n}{b^n}\)[/tex].
2. Applying the Law of Exponents:
In order to simplify the expression [tex]\(\frac{b^n}{b^n}\)[/tex], we need to apply the properties of exponents. One key property is that when you divide two exponential expressions with the same base, you subtract the exponents:
[tex]\[ \frac{b^m}{b^n} = b^{m-n} \][/tex]
In our case, both the numerator and the denominator have the same exponent [tex]\(n\)[/tex]. Thus, we can write:
[tex]\[ \frac{b^n}{b^n} = b^{n-n} \][/tex]
3. Simplifying the Exponent:
Simplifying the exponent [tex]\(n-n\)[/tex] gives:
[tex]\[ n - n = 0 \][/tex]
Therefore, we get:
[tex]\[ b^{n-n} = b^0 \][/tex]
4. Using Another Property of Exponents:
Another important property of exponents tells us that any non-zero number raised to the power of 0 equals 1. Hence:
[tex]\[ b^0 = 1 \][/tex]
As a result, the expression [tex]\(\frac{b^n}{b^n}\)[/tex] simplifies to 1.
Conclusion:
The expression equivalent to [tex]\(\frac{b^n}{b^n}\)[/tex] is always equal to 1, which means none of the given options [tex]\(A, B, C, D\)[/tex] correctly represents [tex]\(\frac{b^n}{b^n}\)[/tex] because the given answer simplifies to 1. However, if [tex]\(b^{n-n}\)[/tex] were presented as one of the options, it would be the correct simplified form in terms of exponents.
1. Understanding the Expression:
The problem requires us to simplify the fraction [tex]\(\frac{b^n}{b^n}\)[/tex].
2. Applying the Law of Exponents:
In order to simplify the expression [tex]\(\frac{b^n}{b^n}\)[/tex], we need to apply the properties of exponents. One key property is that when you divide two exponential expressions with the same base, you subtract the exponents:
[tex]\[ \frac{b^m}{b^n} = b^{m-n} \][/tex]
In our case, both the numerator and the denominator have the same exponent [tex]\(n\)[/tex]. Thus, we can write:
[tex]\[ \frac{b^n}{b^n} = b^{n-n} \][/tex]
3. Simplifying the Exponent:
Simplifying the exponent [tex]\(n-n\)[/tex] gives:
[tex]\[ n - n = 0 \][/tex]
Therefore, we get:
[tex]\[ b^{n-n} = b^0 \][/tex]
4. Using Another Property of Exponents:
Another important property of exponents tells us that any non-zero number raised to the power of 0 equals 1. Hence:
[tex]\[ b^0 = 1 \][/tex]
As a result, the expression [tex]\(\frac{b^n}{b^n}\)[/tex] simplifies to 1.
Conclusion:
The expression equivalent to [tex]\(\frac{b^n}{b^n}\)[/tex] is always equal to 1, which means none of the given options [tex]\(A, B, C, D\)[/tex] correctly represents [tex]\(\frac{b^n}{b^n}\)[/tex] because the given answer simplifies to 1. However, if [tex]\(b^{n-n}\)[/tex] were presented as one of the options, it would be the correct simplified form in terms of exponents.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.