At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the domain of the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] where [tex]\(f(x) = x^2 - 25\)[/tex] and [tex]\(g(x) = x - 5\)[/tex], we need to find the values of [tex]\(x\)[/tex] for which the function is defined.
1. Consider the denominator [tex]\(g(x)\)[/tex] of the function first:
[tex]\[ g(x) = x - 5 \][/tex]
For the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] to be defined, the denominator [tex]\(g(x)\)[/tex] should not be zero. Setting the denominator equal to zero to find the critical points:
[tex]\[ x - 5 = 0 \][/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ x = 5 \][/tex]
So, the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is not defined at [tex]\(x = 5\)[/tex].
2. Consider the numerator [tex]\(f(x)\)[/tex]:
[tex]\[ f(x) = x^2 - 25 \][/tex]
Factor it to better identify any restrictions:
[tex]\[ f(x) = (x + 5)(x - 5) \][/tex]
The factored form shows that [tex]\(f(x)\)[/tex] has zeros at:
[tex]\[ x = 5 \quad \text{and} \quad x = -5 \][/tex]
However, the zeros of [tex]\(f(x)\)[/tex] do not affect the domain of [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] except through [tex]\(g(x)\)[/tex].
3. Determine the actual restrictions on the domain:
- The only value that makes the denominator zero is [tex]\(x = 5\)[/tex].
Hence, the domain of the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is all real values of [tex]\(x\)[/tex] except where [tex]\(x = 5\)[/tex].
So, the correct answer is:
[tex]\[ \text{all real values of } x \text{ except } x=5 \][/tex]
1. Consider the denominator [tex]\(g(x)\)[/tex] of the function first:
[tex]\[ g(x) = x - 5 \][/tex]
For the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] to be defined, the denominator [tex]\(g(x)\)[/tex] should not be zero. Setting the denominator equal to zero to find the critical points:
[tex]\[ x - 5 = 0 \][/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ x = 5 \][/tex]
So, the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is not defined at [tex]\(x = 5\)[/tex].
2. Consider the numerator [tex]\(f(x)\)[/tex]:
[tex]\[ f(x) = x^2 - 25 \][/tex]
Factor it to better identify any restrictions:
[tex]\[ f(x) = (x + 5)(x - 5) \][/tex]
The factored form shows that [tex]\(f(x)\)[/tex] has zeros at:
[tex]\[ x = 5 \quad \text{and} \quad x = -5 \][/tex]
However, the zeros of [tex]\(f(x)\)[/tex] do not affect the domain of [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] except through [tex]\(g(x)\)[/tex].
3. Determine the actual restrictions on the domain:
- The only value that makes the denominator zero is [tex]\(x = 5\)[/tex].
Hence, the domain of the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is all real values of [tex]\(x\)[/tex] except where [tex]\(x = 5\)[/tex].
So, the correct answer is:
[tex]\[ \text{all real values of } x \text{ except } x=5 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.