Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine what the average rate of change tells us about the rocket, we first need to understand what this concept means.
The height [tex]\( h \)[/tex] of the rocket at any time [tex]\( t \)[/tex] is given by the equation:
[tex]\[ h(t) = 3 + 70t - 16t^2 \][/tex]
We are interested in the average rate of change of [tex]\( h(t) \)[/tex] between [tex]\( t = 1 \)[/tex] second and [tex]\( t = 3 \)[/tex] seconds.
1. Calculate the height at [tex]\( t = 1 \)[/tex] second:
[tex]\[ h(1) = 3 + 70(1) - 16(1)^2 \][/tex]
[tex]\[ h(1) = 3 + 70 - 16 \][/tex]
[tex]\[ h(1) = 57 \][/tex]
2. Calculate the height at [tex]\( t = 3 \)[/tex] seconds:
[tex]\[ h(3) = 3 + 70(3) - 16(3)^2 \][/tex]
[tex]\[ h(3) = 3 + 210 - 144 \][/tex]
[tex]\[ h(3) = 69 \][/tex]
3. Calculate the average rate of change:
The average rate of change of a function between two points [tex]\( t_1 \)[/tex] and [tex]\( t_3 \)[/tex] is given by:
[tex]\[ \text{Average rate of change} = \frac{h(t_3) - h(t_1)}{t_3 - t_1} \][/tex]
Substitute [tex]\( t_1 = 1 \)[/tex] and [tex]\( t_3 = 3 \)[/tex]:
[tex]\[ \text{Average rate of change} = \frac{69 - 57}{3 - 1} \][/tex]
[tex]\[ \text{Average rate of change} = \frac{12}{2} \][/tex]
[tex]\[ \text{Average rate of change} = 6 \][/tex]
The average rate of change being 6 means that, on average, the height of the rocket increases by 6 feet per second between [tex]\( t = 1 \)[/tex] second and [tex]\( t = 3 \)[/tex] seconds. Given this steady average increase, this tells us specifically that:
"The rocket is traveling at a constant rate of 6 feet per second between [tex]\( t=1 \)[/tex] and [tex]\( t=3 \)[/tex]."
The height [tex]\( h \)[/tex] of the rocket at any time [tex]\( t \)[/tex] is given by the equation:
[tex]\[ h(t) = 3 + 70t - 16t^2 \][/tex]
We are interested in the average rate of change of [tex]\( h(t) \)[/tex] between [tex]\( t = 1 \)[/tex] second and [tex]\( t = 3 \)[/tex] seconds.
1. Calculate the height at [tex]\( t = 1 \)[/tex] second:
[tex]\[ h(1) = 3 + 70(1) - 16(1)^2 \][/tex]
[tex]\[ h(1) = 3 + 70 - 16 \][/tex]
[tex]\[ h(1) = 57 \][/tex]
2. Calculate the height at [tex]\( t = 3 \)[/tex] seconds:
[tex]\[ h(3) = 3 + 70(3) - 16(3)^2 \][/tex]
[tex]\[ h(3) = 3 + 210 - 144 \][/tex]
[tex]\[ h(3) = 69 \][/tex]
3. Calculate the average rate of change:
The average rate of change of a function between two points [tex]\( t_1 \)[/tex] and [tex]\( t_3 \)[/tex] is given by:
[tex]\[ \text{Average rate of change} = \frac{h(t_3) - h(t_1)}{t_3 - t_1} \][/tex]
Substitute [tex]\( t_1 = 1 \)[/tex] and [tex]\( t_3 = 3 \)[/tex]:
[tex]\[ \text{Average rate of change} = \frac{69 - 57}{3 - 1} \][/tex]
[tex]\[ \text{Average rate of change} = \frac{12}{2} \][/tex]
[tex]\[ \text{Average rate of change} = 6 \][/tex]
The average rate of change being 6 means that, on average, the height of the rocket increases by 6 feet per second between [tex]\( t = 1 \)[/tex] second and [tex]\( t = 3 \)[/tex] seconds. Given this steady average increase, this tells us specifically that:
"The rocket is traveling at a constant rate of 6 feet per second between [tex]\( t=1 \)[/tex] and [tex]\( t=3 \)[/tex]."
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.