Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine what the average rate of change tells us about the rocket, we first need to understand what this concept means.
The height [tex]\( h \)[/tex] of the rocket at any time [tex]\( t \)[/tex] is given by the equation:
[tex]\[ h(t) = 3 + 70t - 16t^2 \][/tex]
We are interested in the average rate of change of [tex]\( h(t) \)[/tex] between [tex]\( t = 1 \)[/tex] second and [tex]\( t = 3 \)[/tex] seconds.
1. Calculate the height at [tex]\( t = 1 \)[/tex] second:
[tex]\[ h(1) = 3 + 70(1) - 16(1)^2 \][/tex]
[tex]\[ h(1) = 3 + 70 - 16 \][/tex]
[tex]\[ h(1) = 57 \][/tex]
2. Calculate the height at [tex]\( t = 3 \)[/tex] seconds:
[tex]\[ h(3) = 3 + 70(3) - 16(3)^2 \][/tex]
[tex]\[ h(3) = 3 + 210 - 144 \][/tex]
[tex]\[ h(3) = 69 \][/tex]
3. Calculate the average rate of change:
The average rate of change of a function between two points [tex]\( t_1 \)[/tex] and [tex]\( t_3 \)[/tex] is given by:
[tex]\[ \text{Average rate of change} = \frac{h(t_3) - h(t_1)}{t_3 - t_1} \][/tex]
Substitute [tex]\( t_1 = 1 \)[/tex] and [tex]\( t_3 = 3 \)[/tex]:
[tex]\[ \text{Average rate of change} = \frac{69 - 57}{3 - 1} \][/tex]
[tex]\[ \text{Average rate of change} = \frac{12}{2} \][/tex]
[tex]\[ \text{Average rate of change} = 6 \][/tex]
The average rate of change being 6 means that, on average, the height of the rocket increases by 6 feet per second between [tex]\( t = 1 \)[/tex] second and [tex]\( t = 3 \)[/tex] seconds. Given this steady average increase, this tells us specifically that:
"The rocket is traveling at a constant rate of 6 feet per second between [tex]\( t=1 \)[/tex] and [tex]\( t=3 \)[/tex]."
The height [tex]\( h \)[/tex] of the rocket at any time [tex]\( t \)[/tex] is given by the equation:
[tex]\[ h(t) = 3 + 70t - 16t^2 \][/tex]
We are interested in the average rate of change of [tex]\( h(t) \)[/tex] between [tex]\( t = 1 \)[/tex] second and [tex]\( t = 3 \)[/tex] seconds.
1. Calculate the height at [tex]\( t = 1 \)[/tex] second:
[tex]\[ h(1) = 3 + 70(1) - 16(1)^2 \][/tex]
[tex]\[ h(1) = 3 + 70 - 16 \][/tex]
[tex]\[ h(1) = 57 \][/tex]
2. Calculate the height at [tex]\( t = 3 \)[/tex] seconds:
[tex]\[ h(3) = 3 + 70(3) - 16(3)^2 \][/tex]
[tex]\[ h(3) = 3 + 210 - 144 \][/tex]
[tex]\[ h(3) = 69 \][/tex]
3. Calculate the average rate of change:
The average rate of change of a function between two points [tex]\( t_1 \)[/tex] and [tex]\( t_3 \)[/tex] is given by:
[tex]\[ \text{Average rate of change} = \frac{h(t_3) - h(t_1)}{t_3 - t_1} \][/tex]
Substitute [tex]\( t_1 = 1 \)[/tex] and [tex]\( t_3 = 3 \)[/tex]:
[tex]\[ \text{Average rate of change} = \frac{69 - 57}{3 - 1} \][/tex]
[tex]\[ \text{Average rate of change} = \frac{12}{2} \][/tex]
[tex]\[ \text{Average rate of change} = 6 \][/tex]
The average rate of change being 6 means that, on average, the height of the rocket increases by 6 feet per second between [tex]\( t = 1 \)[/tex] second and [tex]\( t = 3 \)[/tex] seconds. Given this steady average increase, this tells us specifically that:
"The rocket is traveling at a constant rate of 6 feet per second between [tex]\( t=1 \)[/tex] and [tex]\( t=3 \)[/tex]."
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.