Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the number of [tex]\( x \)[/tex]-intercepts for the function [tex]\( f(x) = (x+5)^3(x-9)(x+1) \)[/tex], follow these steps:
1. Identify the factors of the function: The given function can be expressed as a product of simpler factors:
[tex]\[ f(x) = (x+5)^3 (x-9) (x+1) \][/tex]
2. Set the function equal to zero: The [tex]\( x \)[/tex]-intercepts occur where the function equals zero:
[tex]\[ f(x) = 0 \][/tex]
This means:
[tex]\[ (x+5)^3 (x-9) (x+1) = 0 \][/tex]
3. Solve for [tex]\( x \)[/tex]: Determine the values of [tex]\( x \)[/tex] that make each factor equal to zero.
- For the factor [tex]\((x+5)^3\)[/tex], set [tex]\( x+5 = 0 \)[/tex]:
[tex]\[ x+5 = 0 \implies x = -5 \][/tex]
Since this factor is cubed, [tex]\( x = -5 \)[/tex] is a root with multiplicity 3.
- For the factor [tex]\((x-9)\)[/tex], set [tex]\( x-9 = 0 \)[/tex]:
[tex]\[ x-9 = 0 \implies x = 9 \][/tex]
This factor is linear, so [tex]\( x = 9 \)[/tex] is a root with multiplicity 1.
- For the factor [tex]\((x+1)\)[/tex], set [tex]\( x+1 = 0 \)[/tex]:
[tex]\[ x+1 = 0 \implies x = -1 \][/tex]
This factor is also linear, so [tex]\( x = -1 \)[/tex] is a root with multiplicity 1.
4. List the distinct roots: The distinct values of [tex]\( x \)[/tex] that satisfy the equation [tex]\( f(x) = 0 \)[/tex] are:
[tex]\[ x = -5, \quad x = 9, \quad x = -1 \][/tex]
5. Count the number of distinct [tex]\( x \)[/tex]-intercepts: Even though [tex]\( x = -5 \)[/tex] has a multiplicity of 3, it is counted as one distinct [tex]\( x \)[/tex]-intercept.
So, the distinct [tex]\( x \)[/tex]-intercepts are:
[tex]\[ [-5, 9, -1] \][/tex]
The number of [tex]\( x \)[/tex]-intercepts for this function is [tex]\( 3 \)[/tex].
1. Identify the factors of the function: The given function can be expressed as a product of simpler factors:
[tex]\[ f(x) = (x+5)^3 (x-9) (x+1) \][/tex]
2. Set the function equal to zero: The [tex]\( x \)[/tex]-intercepts occur where the function equals zero:
[tex]\[ f(x) = 0 \][/tex]
This means:
[tex]\[ (x+5)^3 (x-9) (x+1) = 0 \][/tex]
3. Solve for [tex]\( x \)[/tex]: Determine the values of [tex]\( x \)[/tex] that make each factor equal to zero.
- For the factor [tex]\((x+5)^3\)[/tex], set [tex]\( x+5 = 0 \)[/tex]:
[tex]\[ x+5 = 0 \implies x = -5 \][/tex]
Since this factor is cubed, [tex]\( x = -5 \)[/tex] is a root with multiplicity 3.
- For the factor [tex]\((x-9)\)[/tex], set [tex]\( x-9 = 0 \)[/tex]:
[tex]\[ x-9 = 0 \implies x = 9 \][/tex]
This factor is linear, so [tex]\( x = 9 \)[/tex] is a root with multiplicity 1.
- For the factor [tex]\((x+1)\)[/tex], set [tex]\( x+1 = 0 \)[/tex]:
[tex]\[ x+1 = 0 \implies x = -1 \][/tex]
This factor is also linear, so [tex]\( x = -1 \)[/tex] is a root with multiplicity 1.
4. List the distinct roots: The distinct values of [tex]\( x \)[/tex] that satisfy the equation [tex]\( f(x) = 0 \)[/tex] are:
[tex]\[ x = -5, \quad x = 9, \quad x = -1 \][/tex]
5. Count the number of distinct [tex]\( x \)[/tex]-intercepts: Even though [tex]\( x = -5 \)[/tex] has a multiplicity of 3, it is counted as one distinct [tex]\( x \)[/tex]-intercept.
So, the distinct [tex]\( x \)[/tex]-intercepts are:
[tex]\[ [-5, 9, -1] \][/tex]
The number of [tex]\( x \)[/tex]-intercepts for this function is [tex]\( 3 \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.