Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine whether [tex]\( f(x) = x^2 - x + 8 \)[/tex] is an even function, we need to check whether [tex]\( f(-x) \)[/tex] is equivalent to [tex]\( f(x) \)[/tex].
Let's take the candidate statement "Determine whether [tex]\( (-x)^2 - (-x) + 8 \)[/tex] is equivalent to [tex]\( x^2 - x + 8 \)[/tex]":
1. Calculate [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = (-x)^2 - (-x) + 8 \][/tex]
2. Simplify [tex]\( f(-x) \)[/tex]:
[tex]\[ (-x)^2 = x^2 \quad \text{(since squaring a number results in a positive value)} \][/tex]
[tex]\[ -(-x) = x \quad \text{(double negative results in a positive)} \][/tex]
So,
[tex]\[ f(-x) = x^2 + x + 8 \][/tex]
3. Compare [tex]\( f(-x) \)[/tex] to [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x^2 - x + 8 \][/tex]
[tex]\[ f(-x) = x^2 + x + 8 \][/tex]
By comparing [tex]\( f(x) \)[/tex] and [tex]\( f(-x) \)[/tex], we see they are not equivalent, because [tex]\( x^2 - x + 8 \)[/tex] is not equal to [tex]\( x^2 + x + 8 \)[/tex].
Hence, the correct approach statement is:
Determine whether [tex]\( (-x)^2 - (-x) + 8 \)[/tex] is equivalent to [tex]\( x^2 - x + 8 \)[/tex].
This statement is correct because it directly leads to comparing [tex]\( f(x) \)[/tex] and [tex]\( f(-x) \)[/tex] to see if the function is even. Since [tex]\( f(-x) \)[/tex] is not equivalent to [tex]\( f(x) \)[/tex], [tex]\( f(x) \)[/tex] is not an even function.
Let's take the candidate statement "Determine whether [tex]\( (-x)^2 - (-x) + 8 \)[/tex] is equivalent to [tex]\( x^2 - x + 8 \)[/tex]":
1. Calculate [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = (-x)^2 - (-x) + 8 \][/tex]
2. Simplify [tex]\( f(-x) \)[/tex]:
[tex]\[ (-x)^2 = x^2 \quad \text{(since squaring a number results in a positive value)} \][/tex]
[tex]\[ -(-x) = x \quad \text{(double negative results in a positive)} \][/tex]
So,
[tex]\[ f(-x) = x^2 + x + 8 \][/tex]
3. Compare [tex]\( f(-x) \)[/tex] to [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x^2 - x + 8 \][/tex]
[tex]\[ f(-x) = x^2 + x + 8 \][/tex]
By comparing [tex]\( f(x) \)[/tex] and [tex]\( f(-x) \)[/tex], we see they are not equivalent, because [tex]\( x^2 - x + 8 \)[/tex] is not equal to [tex]\( x^2 + x + 8 \)[/tex].
Hence, the correct approach statement is:
Determine whether [tex]\( (-x)^2 - (-x) + 8 \)[/tex] is equivalent to [tex]\( x^2 - x + 8 \)[/tex].
This statement is correct because it directly leads to comparing [tex]\( f(x) \)[/tex] and [tex]\( f(-x) \)[/tex] to see if the function is even. Since [tex]\( f(-x) \)[/tex] is not equivalent to [tex]\( f(x) \)[/tex], [tex]\( f(x) \)[/tex] is not an even function.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.