Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the probability that a student likes both hotdogs and burgers given that they like hotdogs, we need to follow these steps:
1. Identify the number of students who like both hotdogs and burgers.
From the table, we see that there are 32 students who like both hotdogs and burgers.
2. Identify the total number of students who like hotdogs.
From the table, we see that there are 76 students who like hotdogs (this includes both those who like burgers and those who do not).
3. Calculate the probability.
The probability that a student likes burgers given that they like hotdogs is given by the ratio of the number of students who like both hotdogs and burgers to the total number of students who like hotdogs.
So, the probability [tex]\( P(\text{Likes Burgers | Likes Hotdogs}) \)[/tex] is:
[tex]\[ P(\text{Likes Burgers | Likes Hotdogs}) = \frac{\text{Number of students who like both hotdogs and burgers}}{\text{Total number of students who like hotdogs}} \][/tex]
Plugging in the numbers from above:
[tex]\[ P(\text{Likes Burgers | Likes Hotdogs}) = \frac{32}{76} \][/tex]
4. Convert the probability to a percentage.
[tex]\[ P(\text{Likes Burgers | Likes Hotdogs}) \times 100 = \left( \frac{32}{76} \right) \times 100 \approx 42.11\% \][/tex]
Thus, the probability that a student likes burgers given that they like hotdogs is approximately [tex]\( 42.11\% \)[/tex], not [tex]\( 93.8\% \)[/tex].
1. Identify the number of students who like both hotdogs and burgers.
From the table, we see that there are 32 students who like both hotdogs and burgers.
2. Identify the total number of students who like hotdogs.
From the table, we see that there are 76 students who like hotdogs (this includes both those who like burgers and those who do not).
3. Calculate the probability.
The probability that a student likes burgers given that they like hotdogs is given by the ratio of the number of students who like both hotdogs and burgers to the total number of students who like hotdogs.
So, the probability [tex]\( P(\text{Likes Burgers | Likes Hotdogs}) \)[/tex] is:
[tex]\[ P(\text{Likes Burgers | Likes Hotdogs}) = \frac{\text{Number of students who like both hotdogs and burgers}}{\text{Total number of students who like hotdogs}} \][/tex]
Plugging in the numbers from above:
[tex]\[ P(\text{Likes Burgers | Likes Hotdogs}) = \frac{32}{76} \][/tex]
4. Convert the probability to a percentage.
[tex]\[ P(\text{Likes Burgers | Likes Hotdogs}) \times 100 = \left( \frac{32}{76} \right) \times 100 \approx 42.11\% \][/tex]
Thus, the probability that a student likes burgers given that they like hotdogs is approximately [tex]\( 42.11\% \)[/tex], not [tex]\( 93.8\% \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.