Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which function has an inverse that is also a function, we need to check each set of pairs to see if it satisfies the criteria. Specifically, the function's range (y-values) must be unique for each x-value. This ensures that the inverse relation will assign one and only one value of [tex]\( x \)[/tex] to each [tex]\( y \)[/tex].
Let's analyze each set one by one:
1. Set 1: [tex]\(\{(-1, -2), (0, 4), (1, 3), (5, 14), (7, 4)\}\)[/tex]
- For this set, we check the y-values: [tex]\(\{-2, 4, 3, 14, 4\}\)[/tex].
- The y-value [tex]\( 4 \)[/tex] appears twice.
- Therefore, this function does not have an inverse that is also a function because the y-values are not unique.
2. Set 2: [tex]\(\{(-1, 2), (0, 4), (1, 5), (5, 4), (7, 2)\}\)[/tex]
- For this set, we check the y-values: [tex]\(\{2, 4, 5, 4, 2\}\)[/tex].
- The y-values [tex]\( 2 \)[/tex] and [tex]\( 4 \)[/tex] each appear twice.
- Therefore, this function does not have an inverse that is also a function because the y-values are not unique.
3. Set 3: [tex]\(\{(-1, 3), (0, 4), (1, 14), (5, 6), (7, 2)\}\)[/tex]
- For this set, we check the y-values: [tex]\(\{3, 4, 14, 6, 2\}\)[/tex].
- All y-values are unique: [tex]\( 3, 4, 14, 6, 2 \)[/tex].
- Therefore, this function has an inverse that is also a function because the y-values are unique.
4. Set 4: [tex]\(\{(-1, 4), (0, 4), (1, 2), (5, 3), (7, 1)\}\)[/tex]
- For this set, we check the y-values: [tex]\(\{4, 4, 2, 3, 1\}\)[/tex].
- The y-value [tex]\( 4 \)[/tex] appears twice.
- Therefore, this function does not have an inverse that is also a function because the y-values are not unique.
Based on the analysis, the third set [tex]\(\{(-1, 3), (0, 4), (1, 14), (5, 6), (7, 2)\}\)[/tex] has unique y-values, meaning that this function has an inverse that is also a function.
The correct answer is Set 3.
Let's analyze each set one by one:
1. Set 1: [tex]\(\{(-1, -2), (0, 4), (1, 3), (5, 14), (7, 4)\}\)[/tex]
- For this set, we check the y-values: [tex]\(\{-2, 4, 3, 14, 4\}\)[/tex].
- The y-value [tex]\( 4 \)[/tex] appears twice.
- Therefore, this function does not have an inverse that is also a function because the y-values are not unique.
2. Set 2: [tex]\(\{(-1, 2), (0, 4), (1, 5), (5, 4), (7, 2)\}\)[/tex]
- For this set, we check the y-values: [tex]\(\{2, 4, 5, 4, 2\}\)[/tex].
- The y-values [tex]\( 2 \)[/tex] and [tex]\( 4 \)[/tex] each appear twice.
- Therefore, this function does not have an inverse that is also a function because the y-values are not unique.
3. Set 3: [tex]\(\{(-1, 3), (0, 4), (1, 14), (5, 6), (7, 2)\}\)[/tex]
- For this set, we check the y-values: [tex]\(\{3, 4, 14, 6, 2\}\)[/tex].
- All y-values are unique: [tex]\( 3, 4, 14, 6, 2 \)[/tex].
- Therefore, this function has an inverse that is also a function because the y-values are unique.
4. Set 4: [tex]\(\{(-1, 4), (0, 4), (1, 2), (5, 3), (7, 1)\}\)[/tex]
- For this set, we check the y-values: [tex]\(\{4, 4, 2, 3, 1\}\)[/tex].
- The y-value [tex]\( 4 \)[/tex] appears twice.
- Therefore, this function does not have an inverse that is also a function because the y-values are not unique.
Based on the analysis, the third set [tex]\(\{(-1, 3), (0, 4), (1, 14), (5, 6), (7, 2)\}\)[/tex] has unique y-values, meaning that this function has an inverse that is also a function.
The correct answer is Set 3.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.