At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which properties are present in a table that represents an exponential function in the form [tex]\( y = b^x \)[/tex] when [tex]\( b > 1 \)[/tex], we need to analyze what happens to the function under different scenarios. Here's the step-by-step reasoning:
1. Property I: As the [tex]\( x \)[/tex]-values increase, the [tex]\( y \)[/tex]-values increase.
- For an exponential function [tex]\( y = b^x \)[/tex] with [tex]\( b > 1 \)[/tex], as [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] will also increase. This is because raising a number greater than 1 to a higher power results in a larger number.
2. Property II: The point [tex]\( (1, 0) \)[/tex] exists in the table.
- This property is incorrect. For the exponential function [tex]\( y = b^x \)[/tex], when [tex]\( x = 1 \)[/tex], [tex]\( y = b^1 = b \)[/tex], not 0. Therefore, the point [tex]\( (1, 0) \)[/tex] does not exist in such a table.
3. Property III: As the [tex]\( x \)[/tex]-values increase, the [tex]\( y \)[/tex]-values decrease.
- This property is also incorrect. As explained in Property I, for [tex]\( b > 1 \)[/tex], [tex]\( y \)[/tex] increases as [tex]\( x \)[/tex] increases.
4. Property IV: As the [tex]\( x \)[/tex]-values decrease, the [tex]\( y \)[/tex]-values decrease, approaching a singular value.
- This property is true. As [tex]\( x \)[/tex] decreases, especially towards negative infinity, [tex]\( y = b^x \)[/tex] where [tex]\( b > 1 \)[/tex] will approach zero. Thus, [tex]\( y \)[/tex] decreases and approaches a singular value (zero).
By analyzing these properties, we conclude that the correct properties are:
I and IV
1. Property I: As the [tex]\( x \)[/tex]-values increase, the [tex]\( y \)[/tex]-values increase.
- For an exponential function [tex]\( y = b^x \)[/tex] with [tex]\( b > 1 \)[/tex], as [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] will also increase. This is because raising a number greater than 1 to a higher power results in a larger number.
2. Property II: The point [tex]\( (1, 0) \)[/tex] exists in the table.
- This property is incorrect. For the exponential function [tex]\( y = b^x \)[/tex], when [tex]\( x = 1 \)[/tex], [tex]\( y = b^1 = b \)[/tex], not 0. Therefore, the point [tex]\( (1, 0) \)[/tex] does not exist in such a table.
3. Property III: As the [tex]\( x \)[/tex]-values increase, the [tex]\( y \)[/tex]-values decrease.
- This property is also incorrect. As explained in Property I, for [tex]\( b > 1 \)[/tex], [tex]\( y \)[/tex] increases as [tex]\( x \)[/tex] increases.
4. Property IV: As the [tex]\( x \)[/tex]-values decrease, the [tex]\( y \)[/tex]-values decrease, approaching a singular value.
- This property is true. As [tex]\( x \)[/tex] decreases, especially towards negative infinity, [tex]\( y = b^x \)[/tex] where [tex]\( b > 1 \)[/tex] will approach zero. Thus, [tex]\( y \)[/tex] decreases and approaches a singular value (zero).
By analyzing these properties, we conclude that the correct properties are:
I and IV
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.