Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine whether each number is a solution of the inequality [tex]\( 2x + 4 \geq -1 \)[/tex], we need to substitute each number into the inequality and verify if the inequality holds true.
### Part (a): Checking if [tex]\( 3 \)[/tex] is a solution.
1. Substitute [tex]\( 3 \)[/tex] for [tex]\( x \)[/tex] in the inequality:
[tex]\[ 2(3) + 4 \geq -1 \][/tex]
2. Simplify the expression:
[tex]\[ 6 + 4 \geq -1 \][/tex]
[tex]\[ 10 \geq -1 \][/tex]
Since [tex]\( 10 \geq -1 \)[/tex] is a true statement, [tex]\( 3 \)[/tex] is a solution to the inequality.
- Answer: Yes
### Part (b): Checking if [tex]\( -1 \)[/tex] is a solution.
1. Substitute [tex]\( -1 \)[/tex] for [tex]\( x \)[/tex] in the inequality:
[tex]\[ 2(-1) + 4 \geq -1 \][/tex]
2. Simplify the expression:
[tex]\[ -2 + 4 \geq -1 \][/tex]
[tex]\[ 2 \geq -1 \][/tex]
Since [tex]\( 2 \geq -1 \)[/tex] is a true statement, [tex]\( -1 \)[/tex] is a solution to the inequality.
- Answer: Yes
### Part (c): Checking if [tex]\( 1 \)[/tex] is a solution.
1. Substitute [tex]\( 1 \)[/tex] for [tex]\( x \)[/tex] in the inequality:
[tex]\[ 2(1) + 4 \geq -1 \][/tex]
2. Simplify the expression:
[tex]\[ 2 + 4 \geq -1 \][/tex]
[tex]\[ 6 \geq -1 \][/tex]
Since [tex]\( 6 \geq -1 \)[/tex] is a true statement, [tex]\( 1 \)[/tex] is a solution to the inequality.
- Answer: Yes
In conclusion:
- [tex]\( 3 \)[/tex] is a solution to the inequality.
- [tex]\( -1 \)[/tex] is a solution to the inequality.
- [tex]\( 1 \)[/tex] is a solution to the inequality.
### Part (a): Checking if [tex]\( 3 \)[/tex] is a solution.
1. Substitute [tex]\( 3 \)[/tex] for [tex]\( x \)[/tex] in the inequality:
[tex]\[ 2(3) + 4 \geq -1 \][/tex]
2. Simplify the expression:
[tex]\[ 6 + 4 \geq -1 \][/tex]
[tex]\[ 10 \geq -1 \][/tex]
Since [tex]\( 10 \geq -1 \)[/tex] is a true statement, [tex]\( 3 \)[/tex] is a solution to the inequality.
- Answer: Yes
### Part (b): Checking if [tex]\( -1 \)[/tex] is a solution.
1. Substitute [tex]\( -1 \)[/tex] for [tex]\( x \)[/tex] in the inequality:
[tex]\[ 2(-1) + 4 \geq -1 \][/tex]
2. Simplify the expression:
[tex]\[ -2 + 4 \geq -1 \][/tex]
[tex]\[ 2 \geq -1 \][/tex]
Since [tex]\( 2 \geq -1 \)[/tex] is a true statement, [tex]\( -1 \)[/tex] is a solution to the inequality.
- Answer: Yes
### Part (c): Checking if [tex]\( 1 \)[/tex] is a solution.
1. Substitute [tex]\( 1 \)[/tex] for [tex]\( x \)[/tex] in the inequality:
[tex]\[ 2(1) + 4 \geq -1 \][/tex]
2. Simplify the expression:
[tex]\[ 2 + 4 \geq -1 \][/tex]
[tex]\[ 6 \geq -1 \][/tex]
Since [tex]\( 6 \geq -1 \)[/tex] is a true statement, [tex]\( 1 \)[/tex] is a solution to the inequality.
- Answer: Yes
In conclusion:
- [tex]\( 3 \)[/tex] is a solution to the inequality.
- [tex]\( -1 \)[/tex] is a solution to the inequality.
- [tex]\( 1 \)[/tex] is a solution to the inequality.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.