Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine whether each number is a solution of the inequality [tex]\( 2x + 4 \geq -1 \)[/tex], we need to substitute each number into the inequality and verify if the inequality holds true.
### Part (a): Checking if [tex]\( 3 \)[/tex] is a solution.
1. Substitute [tex]\( 3 \)[/tex] for [tex]\( x \)[/tex] in the inequality:
[tex]\[ 2(3) + 4 \geq -1 \][/tex]
2. Simplify the expression:
[tex]\[ 6 + 4 \geq -1 \][/tex]
[tex]\[ 10 \geq -1 \][/tex]
Since [tex]\( 10 \geq -1 \)[/tex] is a true statement, [tex]\( 3 \)[/tex] is a solution to the inequality.
- Answer: Yes
### Part (b): Checking if [tex]\( -1 \)[/tex] is a solution.
1. Substitute [tex]\( -1 \)[/tex] for [tex]\( x \)[/tex] in the inequality:
[tex]\[ 2(-1) + 4 \geq -1 \][/tex]
2. Simplify the expression:
[tex]\[ -2 + 4 \geq -1 \][/tex]
[tex]\[ 2 \geq -1 \][/tex]
Since [tex]\( 2 \geq -1 \)[/tex] is a true statement, [tex]\( -1 \)[/tex] is a solution to the inequality.
- Answer: Yes
### Part (c): Checking if [tex]\( 1 \)[/tex] is a solution.
1. Substitute [tex]\( 1 \)[/tex] for [tex]\( x \)[/tex] in the inequality:
[tex]\[ 2(1) + 4 \geq -1 \][/tex]
2. Simplify the expression:
[tex]\[ 2 + 4 \geq -1 \][/tex]
[tex]\[ 6 \geq -1 \][/tex]
Since [tex]\( 6 \geq -1 \)[/tex] is a true statement, [tex]\( 1 \)[/tex] is a solution to the inequality.
- Answer: Yes
In conclusion:
- [tex]\( 3 \)[/tex] is a solution to the inequality.
- [tex]\( -1 \)[/tex] is a solution to the inequality.
- [tex]\( 1 \)[/tex] is a solution to the inequality.
### Part (a): Checking if [tex]\( 3 \)[/tex] is a solution.
1. Substitute [tex]\( 3 \)[/tex] for [tex]\( x \)[/tex] in the inequality:
[tex]\[ 2(3) + 4 \geq -1 \][/tex]
2. Simplify the expression:
[tex]\[ 6 + 4 \geq -1 \][/tex]
[tex]\[ 10 \geq -1 \][/tex]
Since [tex]\( 10 \geq -1 \)[/tex] is a true statement, [tex]\( 3 \)[/tex] is a solution to the inequality.
- Answer: Yes
### Part (b): Checking if [tex]\( -1 \)[/tex] is a solution.
1. Substitute [tex]\( -1 \)[/tex] for [tex]\( x \)[/tex] in the inequality:
[tex]\[ 2(-1) + 4 \geq -1 \][/tex]
2. Simplify the expression:
[tex]\[ -2 + 4 \geq -1 \][/tex]
[tex]\[ 2 \geq -1 \][/tex]
Since [tex]\( 2 \geq -1 \)[/tex] is a true statement, [tex]\( -1 \)[/tex] is a solution to the inequality.
- Answer: Yes
### Part (c): Checking if [tex]\( 1 \)[/tex] is a solution.
1. Substitute [tex]\( 1 \)[/tex] for [tex]\( x \)[/tex] in the inequality:
[tex]\[ 2(1) + 4 \geq -1 \][/tex]
2. Simplify the expression:
[tex]\[ 2 + 4 \geq -1 \][/tex]
[tex]\[ 6 \geq -1 \][/tex]
Since [tex]\( 6 \geq -1 \)[/tex] is a true statement, [tex]\( 1 \)[/tex] is a solution to the inequality.
- Answer: Yes
In conclusion:
- [tex]\( 3 \)[/tex] is a solution to the inequality.
- [tex]\( -1 \)[/tex] is a solution to the inequality.
- [tex]\( 1 \)[/tex] is a solution to the inequality.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.