Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's solve this step by step.
Given the functions:
[tex]\[ u(x) = x^5 - x^4 + x^2 \][/tex]
[tex]\[ v(x) = -x^2 \][/tex]
We need to find the expression equivalent to [tex]\(\left(\frac{u}{v}\right)(x)\)[/tex].
First, we write the fraction [tex]\(\frac{u(x)}{v(x)}\)[/tex]:
[tex]\[ \frac{u(x)}{v(x)} = \frac{x^5 - x^4 + x^2}{-x^2} \][/tex]
Next, we simplify this expression by dividing each term in the numerator by the denominator [tex]\(-x^2\)[/tex]:
1. Divide [tex]\(x^5\)[/tex] by [tex]\(-x^2\)[/tex]:
[tex]\[ \frac{x^5}{-x^2} = -x^{5-2} = -x^3 \][/tex]
2. Divide [tex]\(x^4\)[/tex] by [tex]\(-x^2\)[/tex]:
[tex]\[ \frac{x^4}{-x^2} = -x^{4-2} = -x^2 \][/tex]
3. Divide [tex]\(x^2\)[/tex] by [tex]\(-x^2\)[/tex]:
[tex]\[ \frac{x^2}{-x^2} = -1 \][/tex]
Combining these results, we get:
[tex]\[ \frac{x^5 - x^4 + x^2}{-x^2} = -x^3 + x^2 - 1 \][/tex]
Therefore, the expression equivalent to [tex]\(\left(\frac{u}{v}\right)(x)\)[/tex] is:
[tex]\[ -x^3 + x^2 - 1 \][/tex]
Among the given options, the correct one is:
[tex]\[ \boxed{-x^3 + x^2 - 1} \][/tex]
Given the functions:
[tex]\[ u(x) = x^5 - x^4 + x^2 \][/tex]
[tex]\[ v(x) = -x^2 \][/tex]
We need to find the expression equivalent to [tex]\(\left(\frac{u}{v}\right)(x)\)[/tex].
First, we write the fraction [tex]\(\frac{u(x)}{v(x)}\)[/tex]:
[tex]\[ \frac{u(x)}{v(x)} = \frac{x^5 - x^4 + x^2}{-x^2} \][/tex]
Next, we simplify this expression by dividing each term in the numerator by the denominator [tex]\(-x^2\)[/tex]:
1. Divide [tex]\(x^5\)[/tex] by [tex]\(-x^2\)[/tex]:
[tex]\[ \frac{x^5}{-x^2} = -x^{5-2} = -x^3 \][/tex]
2. Divide [tex]\(x^4\)[/tex] by [tex]\(-x^2\)[/tex]:
[tex]\[ \frac{x^4}{-x^2} = -x^{4-2} = -x^2 \][/tex]
3. Divide [tex]\(x^2\)[/tex] by [tex]\(-x^2\)[/tex]:
[tex]\[ \frac{x^2}{-x^2} = -1 \][/tex]
Combining these results, we get:
[tex]\[ \frac{x^5 - x^4 + x^2}{-x^2} = -x^3 + x^2 - 1 \][/tex]
Therefore, the expression equivalent to [tex]\(\left(\frac{u}{v}\right)(x)\)[/tex] is:
[tex]\[ -x^3 + x^2 - 1 \][/tex]
Among the given options, the correct one is:
[tex]\[ \boxed{-x^3 + x^2 - 1} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.