Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure! Let's solve the inequality step-by-step.
We start with the inequality:
[tex]\[ 54 - 10x \leq 20 + 7x \][/tex]
1. Move all terms involving [tex]\( x \)[/tex] to one side by subtracting [tex]\( 7x \)[/tex] from both sides:
[tex]\[ 54 - 10x - 7x \leq 20 \][/tex]
2. Combine the like terms on the left side:
[tex]\[ 54 - 17x \leq 20 \][/tex]
3. Move the constant term on the left side to the right side by subtracting [tex]\( 54 \)[/tex] from both sides:
[tex]\[ -17x \leq 20 - 54 \][/tex]
4. Simplify the constants on the right side:
[tex]\[ -17x \leq -34 \][/tex]
5. Divide both sides of the inequality by [tex]\(-17\)[/tex] (since we are dividing by a negative number, we must reverse the inequality sign):
[tex]\[ x \geq \frac{-34}{-17} \][/tex]
6. Simplify the fraction:
[tex]\[ x \geq 2 \][/tex]
So the correct answer is [tex]\( x \geq 2 \)[/tex], which corresponds to option:
B. [tex]\( x \geq 2 \)[/tex]
We start with the inequality:
[tex]\[ 54 - 10x \leq 20 + 7x \][/tex]
1. Move all terms involving [tex]\( x \)[/tex] to one side by subtracting [tex]\( 7x \)[/tex] from both sides:
[tex]\[ 54 - 10x - 7x \leq 20 \][/tex]
2. Combine the like terms on the left side:
[tex]\[ 54 - 17x \leq 20 \][/tex]
3. Move the constant term on the left side to the right side by subtracting [tex]\( 54 \)[/tex] from both sides:
[tex]\[ -17x \leq 20 - 54 \][/tex]
4. Simplify the constants on the right side:
[tex]\[ -17x \leq -34 \][/tex]
5. Divide both sides of the inequality by [tex]\(-17\)[/tex] (since we are dividing by a negative number, we must reverse the inequality sign):
[tex]\[ x \geq \frac{-34}{-17} \][/tex]
6. Simplify the fraction:
[tex]\[ x \geq 2 \][/tex]
So the correct answer is [tex]\( x \geq 2 \)[/tex], which corresponds to option:
B. [tex]\( x \geq 2 \)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.