Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's analyze the function [tex]\( g \)[/tex] using the provided table:
[tex]\[ \begin{array}{cccccc} x & -1 & 0 & 1 & 2 & 3 \\ g(x) & -24 & -4 & 0 & \frac{4}{5} & \frac{24}{25} \end{array} \][/tex]
Step-by-Step Analysis:
1. Determining the x-intercept:
- The x-intercept is the value of [tex]\( x \)[/tex] where [tex]\( g(x) = 0 \)[/tex].
- From the table, [tex]\( g(1) = 0 \)[/tex].
- Therefore, the x-intercept is [tex]\( x = 1 \)[/tex].
2. Determining the y-intercept:
- The y-intercept is the value of [tex]\( g(x) \)[/tex] when [tex]\( x = 0 \)[/tex].
- From the table, [tex]\( g(0) = -4 \)[/tex].
- Therefore, the y-intercept is [tex]\( y = -4 \)[/tex].
3. Analyzing the end behavior as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex]:
- To infer the end behavior, we observe the values of [tex]\( g(x) \)[/tex] as [tex]\( x \)[/tex] increases.
- As [tex]\( x \)[/tex] increases from 1 to 3, [tex]\( g(x) \)[/tex] values approach 1 (since [tex]\(\frac{4}{5}\)[/tex] and [tex]\(\frac{24}{25}\)[/tex] are close to 1).
- Therefore, as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex], it appears that [tex]\( g(x) \)[/tex] approaches 1.
Given this analysis, let's compare the statements:
(A) "They have the same x-intercept and the same end behavior as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex]."
- Incorrect because another function must have the same x-intercept (1) and also approach 1 at [tex]\( x \)[/tex] increasing indefinitely.
(B) "They have the same end behavior as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex], but they have different x- and y-intercepts."
- This statement can be true if we compare function [tex]\( g(x) \)[/tex] with another function that has the same end behavior (approaching 1), but with different x-intercepts and y-intercepts.
(C) "They have the same x-intercept and the same y-intercept."
- Incorrect because that would imply the functions have identical intercepts, which is not given in the problem.
(D) "They have the same y-intercept and the same end behavior as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex]."
- Incorrect because it is specified that the other function must have the same y-intercept as -4 and also approaches 1 as [tex]\( x \)[/tex] increases indefinitely.
The correct statement is:
(B) They have the same end behavior as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex], but they have different x- and y-intercepts.
[tex]\[ \begin{array}{cccccc} x & -1 & 0 & 1 & 2 & 3 \\ g(x) & -24 & -4 & 0 & \frac{4}{5} & \frac{24}{25} \end{array} \][/tex]
Step-by-Step Analysis:
1. Determining the x-intercept:
- The x-intercept is the value of [tex]\( x \)[/tex] where [tex]\( g(x) = 0 \)[/tex].
- From the table, [tex]\( g(1) = 0 \)[/tex].
- Therefore, the x-intercept is [tex]\( x = 1 \)[/tex].
2. Determining the y-intercept:
- The y-intercept is the value of [tex]\( g(x) \)[/tex] when [tex]\( x = 0 \)[/tex].
- From the table, [tex]\( g(0) = -4 \)[/tex].
- Therefore, the y-intercept is [tex]\( y = -4 \)[/tex].
3. Analyzing the end behavior as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex]:
- To infer the end behavior, we observe the values of [tex]\( g(x) \)[/tex] as [tex]\( x \)[/tex] increases.
- As [tex]\( x \)[/tex] increases from 1 to 3, [tex]\( g(x) \)[/tex] values approach 1 (since [tex]\(\frac{4}{5}\)[/tex] and [tex]\(\frac{24}{25}\)[/tex] are close to 1).
- Therefore, as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex], it appears that [tex]\( g(x) \)[/tex] approaches 1.
Given this analysis, let's compare the statements:
(A) "They have the same x-intercept and the same end behavior as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex]."
- Incorrect because another function must have the same x-intercept (1) and also approach 1 at [tex]\( x \)[/tex] increasing indefinitely.
(B) "They have the same end behavior as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex], but they have different x- and y-intercepts."
- This statement can be true if we compare function [tex]\( g(x) \)[/tex] with another function that has the same end behavior (approaching 1), but with different x-intercepts and y-intercepts.
(C) "They have the same x-intercept and the same y-intercept."
- Incorrect because that would imply the functions have identical intercepts, which is not given in the problem.
(D) "They have the same y-intercept and the same end behavior as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex]."
- Incorrect because it is specified that the other function must have the same y-intercept as -4 and also approaches 1 as [tex]\( x \)[/tex] increases indefinitely.
The correct statement is:
(B) They have the same end behavior as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex], but they have different x- and y-intercepts.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.