Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To construct a 90% confidence interval for [tex]\(\mu_d\)[/tex], the population mean difference in assembly times for the two processes, we proceed with the following steps:
1. Determine the differences:
From the given data:
Differences (Process 1 - Process 2): [tex]\( [14, -2, -10, 18, -7, 14, 10, -12, 9, -9] \)[/tex]
2. Calculate the sample mean ([tex]\(\bar{x}\)[/tex]) of the differences:
The mean difference is given as:
[tex]\[ \bar{x} = 2.5 \][/tex]
3. Calculate the sample standard deviation ([tex]\(s\)[/tex]) of the differences:
The standard deviation of the differences is:
[tex]\[ s = 11.607 \][/tex]
4. Determine the number of samples (n):
The number of differences is:
[tex]\[ n = 10 \][/tex]
5. Determine the degrees of freedom (df):
[tex]\[ \text{df} = n - 1 = 10 - 1 = 9 \][/tex]
6. Determine the critical t-value for the 90% confidence level:
Using the t-distribution table or an appropriate statistical tool, we find the critical t-value for a 90% confidence level and 9 degrees of freedom:
[tex]\[ t_{\text{critical}} = 1.833 \][/tex]
7. Calculate the margin of error (ME):
The margin of error is given by:
[tex]\[ \text{ME} = t_{\text{critical}} \times \left(\frac{s}{\sqrt{n}}\right) \][/tex]
Substituting the values, we get:
[tex]\[ \text{ME} = 1.833 \times \left(\frac{11.607}{\sqrt{10}}\right) = 6.728 \][/tex]
8. Calculate the lower and upper limits of the confidence interval:
The lower limit is:
[tex]\[ \text{Lower limit} = \bar{x} - \text{ME} = 2.5 - 6.728 = -4.23 \][/tex]
The upper limit is:
[tex]\[ \text{Upper limit} = \bar{x} + \text{ME} = 2.5 + 6.728 = 9.23 \][/tex]
Therefore, the 90% confidence interval for the population mean difference in assembly times for the two processes is:
- Lower limit: [tex]\(-4.23\)[/tex]
- Upper limit: [tex]\(9.23\)[/tex]
1. Determine the differences:
From the given data:
Differences (Process 1 - Process 2): [tex]\( [14, -2, -10, 18, -7, 14, 10, -12, 9, -9] \)[/tex]
2. Calculate the sample mean ([tex]\(\bar{x}\)[/tex]) of the differences:
The mean difference is given as:
[tex]\[ \bar{x} = 2.5 \][/tex]
3. Calculate the sample standard deviation ([tex]\(s\)[/tex]) of the differences:
The standard deviation of the differences is:
[tex]\[ s = 11.607 \][/tex]
4. Determine the number of samples (n):
The number of differences is:
[tex]\[ n = 10 \][/tex]
5. Determine the degrees of freedom (df):
[tex]\[ \text{df} = n - 1 = 10 - 1 = 9 \][/tex]
6. Determine the critical t-value for the 90% confidence level:
Using the t-distribution table or an appropriate statistical tool, we find the critical t-value for a 90% confidence level and 9 degrees of freedom:
[tex]\[ t_{\text{critical}} = 1.833 \][/tex]
7. Calculate the margin of error (ME):
The margin of error is given by:
[tex]\[ \text{ME} = t_{\text{critical}} \times \left(\frac{s}{\sqrt{n}}\right) \][/tex]
Substituting the values, we get:
[tex]\[ \text{ME} = 1.833 \times \left(\frac{11.607}{\sqrt{10}}\right) = 6.728 \][/tex]
8. Calculate the lower and upper limits of the confidence interval:
The lower limit is:
[tex]\[ \text{Lower limit} = \bar{x} - \text{ME} = 2.5 - 6.728 = -4.23 \][/tex]
The upper limit is:
[tex]\[ \text{Upper limit} = \bar{x} + \text{ME} = 2.5 + 6.728 = 9.23 \][/tex]
Therefore, the 90% confidence interval for the population mean difference in assembly times for the two processes is:
- Lower limit: [tex]\(-4.23\)[/tex]
- Upper limit: [tex]\(9.23\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.