Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve the given expression step by step to find the equivalent expression. The expression provided is:
[tex]\[ \frac{(4 m^2 n)^2}{2 m^5 n} \][/tex]
First, we need to simplify the numerator [tex]\((4 m^2 n)^2\)[/tex]:
[tex]\[ (4 m^2 n)^2 = (4)^2 \cdot (m^2)^2 \cdot (n)^2 = 16 m^4 n^2 \][/tex]
So, the expression now looks like:
[tex]\[ \frac{16 m^4 n^2}{2 m^5 n} \][/tex]
Next, we simplify this fraction by dividing both the numerator and the denominator by common factors.
Start by simplifying the constants:
[tex]\[ \frac{16}{2} = 8 \][/tex]
Now we have:
[tex]\[ \frac{8 m^4 n^2}{m^5 n} \][/tex]
To further simplify this, we divide each variable (and their exponents) in the numerator by the corresponding variable (and their exponents) in the denominator.
For [tex]\(m\)[/tex]:
[tex]\[ \frac{m^4}{m^5} = m^{4-5} = m^{-1} \][/tex]
For [tex]\(n\)[/tex]:
[tex]\[ \frac{n^2}{n} = n^{2-1} = n \][/tex]
Putting it all together, we have:
[tex]\[ 8 m^{-1} n \][/tex]
Hence, the correct expression equivalent to the given expression is:
[tex]\[ 8 m^{-1} n \][/tex]
The correct choice is:
A. [tex]\(8 m^{-1} n\)[/tex]
[tex]\[ \frac{(4 m^2 n)^2}{2 m^5 n} \][/tex]
First, we need to simplify the numerator [tex]\((4 m^2 n)^2\)[/tex]:
[tex]\[ (4 m^2 n)^2 = (4)^2 \cdot (m^2)^2 \cdot (n)^2 = 16 m^4 n^2 \][/tex]
So, the expression now looks like:
[tex]\[ \frac{16 m^4 n^2}{2 m^5 n} \][/tex]
Next, we simplify this fraction by dividing both the numerator and the denominator by common factors.
Start by simplifying the constants:
[tex]\[ \frac{16}{2} = 8 \][/tex]
Now we have:
[tex]\[ \frac{8 m^4 n^2}{m^5 n} \][/tex]
To further simplify this, we divide each variable (and their exponents) in the numerator by the corresponding variable (and their exponents) in the denominator.
For [tex]\(m\)[/tex]:
[tex]\[ \frac{m^4}{m^5} = m^{4-5} = m^{-1} \][/tex]
For [tex]\(n\)[/tex]:
[tex]\[ \frac{n^2}{n} = n^{2-1} = n \][/tex]
Putting it all together, we have:
[tex]\[ 8 m^{-1} n \][/tex]
Hence, the correct expression equivalent to the given expression is:
[tex]\[ 8 m^{-1} n \][/tex]
The correct choice is:
A. [tex]\(8 m^{-1} n\)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.