Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Consider the original equation:
[tex]\[ 3x + 2y = 8 \][/tex]
First, we need to rearrange this equation into slope-intercept form (y = mx + b), where m is the slope and b is the y-intercept.
Start by solving for y:
[tex]\[ 2y = -3x + 8 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 4 \][/tex]
So, the slope (m) of this equation is [tex]\(-\frac{3}{2}\)[/tex].
A line parallel to this will have the same slope. Therefore, the slope of the new line is also [tex]\(-\frac{3}{2}\)[/tex].
Next, we use the point-slope form of the equation of a line to find the equation of the line that is parallel and passes through the point [tex]\((-2, 5)\)[/tex]. The point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is the given point [tex]\((-2, 5)\)[/tex] and [tex]\( m \)[/tex] is the slope.
Substitute the given point and the slope into the equation:
[tex]\[ y - 5 = -\frac{3}{2}(x + 2) \][/tex]
Next, distribute the slope on the right side:
[tex]\[ y - 5 = -\frac{3}{2}x - 3 \][/tex]
Add 5 to both sides to put the equation into the slope-intercept form (y = mx + b):
[tex]\[ y = -\frac{3}{2}x - 3 + 5 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]
Therefore, the equation of the line parallel to [tex]\(3x + 2y = 8\)[/tex] and passing through the point [tex]\((-2, 5)\)[/tex] is:
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]
So, the correctly filled blanks are:
[tex]\[ y = -\frac{3}{2} x + 2 \][/tex]
[tex]\[ 3x + 2y = 8 \][/tex]
First, we need to rearrange this equation into slope-intercept form (y = mx + b), where m is the slope and b is the y-intercept.
Start by solving for y:
[tex]\[ 2y = -3x + 8 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 4 \][/tex]
So, the slope (m) of this equation is [tex]\(-\frac{3}{2}\)[/tex].
A line parallel to this will have the same slope. Therefore, the slope of the new line is also [tex]\(-\frac{3}{2}\)[/tex].
Next, we use the point-slope form of the equation of a line to find the equation of the line that is parallel and passes through the point [tex]\((-2, 5)\)[/tex]. The point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is the given point [tex]\((-2, 5)\)[/tex] and [tex]\( m \)[/tex] is the slope.
Substitute the given point and the slope into the equation:
[tex]\[ y - 5 = -\frac{3}{2}(x + 2) \][/tex]
Next, distribute the slope on the right side:
[tex]\[ y - 5 = -\frac{3}{2}x - 3 \][/tex]
Add 5 to both sides to put the equation into the slope-intercept form (y = mx + b):
[tex]\[ y = -\frac{3}{2}x - 3 + 5 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]
Therefore, the equation of the line parallel to [tex]\(3x + 2y = 8\)[/tex] and passing through the point [tex]\((-2, 5)\)[/tex] is:
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]
So, the correctly filled blanks are:
[tex]\[ y = -\frac{3}{2} x + 2 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.