At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Complete the equation for a line passing through point [tex]\( C \)[/tex] and perpendicular to [tex]\( \overline{AB} \)[/tex]:

Triangle [tex]\( ABC \)[/tex] is defined by the points [tex]\( A(2,9) \)[/tex], [tex]\( B(8,4) \)[/tex], and [tex]\( C(-3,-2) \)[/tex].

[tex]\( y = \square x + \square \)[/tex]

Sagot :

First, we need to find the slope of line segment [tex]\( \overline{A B} \)[/tex]. The formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the points [tex]\( A(2, 9) \)[/tex] and [tex]\( B(8, 4) \)[/tex]:
[tex]\[ \text{slope of } \overline{A B} = \frac{4 - 9}{8 - 2} = \frac{-5}{6} \][/tex]

Next, for a line perpendicular to [tex]\( \overline{A B} \)[/tex], the slope is the negative reciprocal of [tex]\(-\frac{5}{6}\)[/tex]. Thus:
[tex]\[ \text{slope of the perpendicular line} = \frac{6}{5} \][/tex]

We then use the point-slope form of the equation for the line that passes through point [tex]\( C(-3, -2) \)[/tex] with this slope. The point-slope form is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Plugging in the values, [tex]\((x_1, y_1) = (-3, -2)\)[/tex] and [tex]\(m = \frac{6}{5}\)[/tex]:
[tex]\[ y - (-2) = \frac{6}{5}(x - (-3)) \][/tex]
This simplifies to:
[tex]\[ y + 2 = \frac{6}{5}(x + 3) \][/tex]

To convert this to the slope-intercept form [tex]\( y = mx + b \)[/tex], we need to solve for [tex]\( y \)[/tex]:
[tex]\[ y + 2 = \frac{6}{5}x + \frac{6}{5} \cdot 3 \][/tex]
[tex]\[ y + 2 = \frac{6}{5}x + \frac{18}{5} \][/tex]
Subtracting 2 from both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{6}{5}x + \frac{18}{5} - 2 \][/tex]
[tex]\[ y = \frac{6}{5}x + \frac{18}{5} - \frac{10}{5} \][/tex]
[tex]\[ y = \frac{6}{5}x + \frac{8}{5} \][/tex]

Thus, the equation of the line is:
[tex]\[ y = 1.2x + 1.6 \][/tex]

So for the boxes:
[tex]\[ y = \boxed{1.2}x + \boxed{1.6} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.