Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve this problem, we need to analyze the given series [tex]$\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots$[/tex] and determine which expression defines [tex]\( S_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity.
This series is a geometric series where the first term ([tex]\( a \)[/tex]) is [tex]\( \frac{1}{8} \)[/tex] and the common ratio ([tex]\( r \)[/tex]) is [tex]\( \frac{1}{2} \)[/tex]. The sum of the first [tex]\( n \)[/tex] terms ([tex]\( S_n \)[/tex]) of a geometric series can be given by:
[tex]\[ S_n = a \cdot \frac{1 - r^n}{1 - r} \][/tex]
For a geometric series with [tex]\( |r| < 1 \)[/tex], as [tex]\( n \)[/tex] approaches infinity, the term [tex]\( r^n \)[/tex] approaches 0. Therefore, the infinite sum ([tex]\( S \)[/tex]) is:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
When we plug in the values [tex]\( a = \frac{1}{8} \)[/tex] and [tex]\( r = \frac{1}{2} \)[/tex], we get:
[tex]\[ S = \frac{\frac{1}{8}}{1 - \frac{1}{2}} = \frac{\frac{1}{8}}{\frac{1}{2}} = \frac{1}{8} \times \frac{2}{1} = \frac{1}{4} \][/tex]
Now, we need to check which of the given options approaches [tex]\( \frac{1}{4} \)[/tex] as [tex]\( n \)[/tex] approaches infinity.
1. [tex]\(\lim_{n \to \infty} \frac{1}{2^n}\)[/tex]
As [tex]\( n \)[/tex] approaches infinity, [tex]\( 2^n \)[/tex] grows very large, causing [tex]\( \frac{1}{2^n} \)[/tex] to approach 0.
2. [tex]\(\lim_{n \to \infty} \frac{1}{4(2^n)}\)[/tex]
Similarly, [tex]\( 4(2^n) \)[/tex] grows very large as [tex]\( n \)[/tex] approaches infinity, causing [tex]\( \frac{1}{4(2^n)} \)[/tex] to also approach 0.
3. [tex]\(\lim_{n \to \infty} \frac{2^n}{4(2^n)}\)[/tex]
Here, the term [tex]\( \frac{2^n}{4(2^n)} \)[/tex] simplifies to [tex]\( \frac{2^n}{4 \cdot 2^n} = \frac{2^n}{2^{n+2}} = \frac{1}{4} \)[/tex]. As [tex]\( n \)[/tex] approaches infinity, this limit equals [tex]\( \frac{1}{4} \)[/tex].
4. [tex]\(\lim_{n \to \infty} \frac{2^n - 1}{4(2^n)}\)[/tex]
This expression simplifies to [tex]\( \frac{2^n - 1}{4 \cdot 2^n} = \frac{2^n}{4 \cdot 2^n} - \frac{1}{4 \cdot 2^n} = \frac{1}{4} - \frac{1}{4 \cdot 2^n} \)[/tex]. As [tex]\( n \)[/tex] approaches infinity, [tex]\( \frac{1}{4 \cdot 2^n} \)[/tex] approaches 0, so the whole limit approaches [tex]\( \frac{1}{4} \)[/tex].
Thus, the two expressions that define [tex]\( S_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity are:
[tex]\[ \lim_{n \to \infty} \frac{2^n}{4 \cdot 2^n} \][/tex]
[tex]\[ \lim_{n \to \infty} \frac{2^n - 1}{4 \cdot 2^n} \][/tex]
Both of these limits approach [tex]\( \frac{1}{4} \)[/tex], making an expression defining [tex]\( S_n \)[/tex]:
Answer:
[tex]\[ \lim_{n \to \infty} \frac{2^n}{4(2^n)} \quad \text{and} \quad \lim_{n \to \infty} \frac{2^n - 1}{4(2^n)} \][/tex]
Given that the second form is exactly provided in the options, the correct answer thus is:
[tex]\[ \lim_{n \to \infty} \frac{2^n - 1}{4(2^n)} \][/tex]
This series is a geometric series where the first term ([tex]\( a \)[/tex]) is [tex]\( \frac{1}{8} \)[/tex] and the common ratio ([tex]\( r \)[/tex]) is [tex]\( \frac{1}{2} \)[/tex]. The sum of the first [tex]\( n \)[/tex] terms ([tex]\( S_n \)[/tex]) of a geometric series can be given by:
[tex]\[ S_n = a \cdot \frac{1 - r^n}{1 - r} \][/tex]
For a geometric series with [tex]\( |r| < 1 \)[/tex], as [tex]\( n \)[/tex] approaches infinity, the term [tex]\( r^n \)[/tex] approaches 0. Therefore, the infinite sum ([tex]\( S \)[/tex]) is:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
When we plug in the values [tex]\( a = \frac{1}{8} \)[/tex] and [tex]\( r = \frac{1}{2} \)[/tex], we get:
[tex]\[ S = \frac{\frac{1}{8}}{1 - \frac{1}{2}} = \frac{\frac{1}{8}}{\frac{1}{2}} = \frac{1}{8} \times \frac{2}{1} = \frac{1}{4} \][/tex]
Now, we need to check which of the given options approaches [tex]\( \frac{1}{4} \)[/tex] as [tex]\( n \)[/tex] approaches infinity.
1. [tex]\(\lim_{n \to \infty} \frac{1}{2^n}\)[/tex]
As [tex]\( n \)[/tex] approaches infinity, [tex]\( 2^n \)[/tex] grows very large, causing [tex]\( \frac{1}{2^n} \)[/tex] to approach 0.
2. [tex]\(\lim_{n \to \infty} \frac{1}{4(2^n)}\)[/tex]
Similarly, [tex]\( 4(2^n) \)[/tex] grows very large as [tex]\( n \)[/tex] approaches infinity, causing [tex]\( \frac{1}{4(2^n)} \)[/tex] to also approach 0.
3. [tex]\(\lim_{n \to \infty} \frac{2^n}{4(2^n)}\)[/tex]
Here, the term [tex]\( \frac{2^n}{4(2^n)} \)[/tex] simplifies to [tex]\( \frac{2^n}{4 \cdot 2^n} = \frac{2^n}{2^{n+2}} = \frac{1}{4} \)[/tex]. As [tex]\( n \)[/tex] approaches infinity, this limit equals [tex]\( \frac{1}{4} \)[/tex].
4. [tex]\(\lim_{n \to \infty} \frac{2^n - 1}{4(2^n)}\)[/tex]
This expression simplifies to [tex]\( \frac{2^n - 1}{4 \cdot 2^n} = \frac{2^n}{4 \cdot 2^n} - \frac{1}{4 \cdot 2^n} = \frac{1}{4} - \frac{1}{4 \cdot 2^n} \)[/tex]. As [tex]\( n \)[/tex] approaches infinity, [tex]\( \frac{1}{4 \cdot 2^n} \)[/tex] approaches 0, so the whole limit approaches [tex]\( \frac{1}{4} \)[/tex].
Thus, the two expressions that define [tex]\( S_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity are:
[tex]\[ \lim_{n \to \infty} \frac{2^n}{4 \cdot 2^n} \][/tex]
[tex]\[ \lim_{n \to \infty} \frac{2^n - 1}{4 \cdot 2^n} \][/tex]
Both of these limits approach [tex]\( \frac{1}{4} \)[/tex], making an expression defining [tex]\( S_n \)[/tex]:
Answer:
[tex]\[ \lim_{n \to \infty} \frac{2^n}{4(2^n)} \quad \text{and} \quad \lim_{n \to \infty} \frac{2^n - 1}{4(2^n)} \][/tex]
Given that the second form is exactly provided in the options, the correct answer thus is:
[tex]\[ \lim_{n \to \infty} \frac{2^n - 1}{4(2^n)} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.