Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Consider the series [tex]\(\frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \ldots\)[/tex]

Which expression defines [tex]\(S_n\)[/tex]?

A. [tex]\(\lim_{n \rightarrow \infty} \frac{1}{2^n}\)[/tex]

B. [tex]\(\lim_{n \rightarrow \infty} \frac{1}{4(2^n)}\)[/tex]

C. [tex]\(\lim_{n \rightarrow \infty} \frac{2^n}{4(2^n)}\)[/tex]

D. [tex]\(\lim_{n \rightarrow \infty} \frac{2^n - 1}{4(2^n)}\)[/tex]


Sagot :

To solve this problem, we need to analyze the given series [tex]$\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots$[/tex] and determine which expression defines [tex]\( S_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity.

This series is a geometric series where the first term ([tex]\( a \)[/tex]) is [tex]\( \frac{1}{8} \)[/tex] and the common ratio ([tex]\( r \)[/tex]) is [tex]\( \frac{1}{2} \)[/tex]. The sum of the first [tex]\( n \)[/tex] terms ([tex]\( S_n \)[/tex]) of a geometric series can be given by:

[tex]\[ S_n = a \cdot \frac{1 - r^n}{1 - r} \][/tex]

For a geometric series with [tex]\( |r| < 1 \)[/tex], as [tex]\( n \)[/tex] approaches infinity, the term [tex]\( r^n \)[/tex] approaches 0. Therefore, the infinite sum ([tex]\( S \)[/tex]) is:

[tex]\[ S = \frac{a}{1 - r} \][/tex]

When we plug in the values [tex]\( a = \frac{1}{8} \)[/tex] and [tex]\( r = \frac{1}{2} \)[/tex], we get:

[tex]\[ S = \frac{\frac{1}{8}}{1 - \frac{1}{2}} = \frac{\frac{1}{8}}{\frac{1}{2}} = \frac{1}{8} \times \frac{2}{1} = \frac{1}{4} \][/tex]

Now, we need to check which of the given options approaches [tex]\( \frac{1}{4} \)[/tex] as [tex]\( n \)[/tex] approaches infinity.

1. [tex]\(\lim_{n \to \infty} \frac{1}{2^n}\)[/tex]

As [tex]\( n \)[/tex] approaches infinity, [tex]\( 2^n \)[/tex] grows very large, causing [tex]\( \frac{1}{2^n} \)[/tex] to approach 0.

2. [tex]\(\lim_{n \to \infty} \frac{1}{4(2^n)}\)[/tex]

Similarly, [tex]\( 4(2^n) \)[/tex] grows very large as [tex]\( n \)[/tex] approaches infinity, causing [tex]\( \frac{1}{4(2^n)} \)[/tex] to also approach 0.

3. [tex]\(\lim_{n \to \infty} \frac{2^n}{4(2^n)}\)[/tex]

Here, the term [tex]\( \frac{2^n}{4(2^n)} \)[/tex] simplifies to [tex]\( \frac{2^n}{4 \cdot 2^n} = \frac{2^n}{2^{n+2}} = \frac{1}{4} \)[/tex]. As [tex]\( n \)[/tex] approaches infinity, this limit equals [tex]\( \frac{1}{4} \)[/tex].

4. [tex]\(\lim_{n \to \infty} \frac{2^n - 1}{4(2^n)}\)[/tex]

This expression simplifies to [tex]\( \frac{2^n - 1}{4 \cdot 2^n} = \frac{2^n}{4 \cdot 2^n} - \frac{1}{4 \cdot 2^n} = \frac{1}{4} - \frac{1}{4 \cdot 2^n} \)[/tex]. As [tex]\( n \)[/tex] approaches infinity, [tex]\( \frac{1}{4 \cdot 2^n} \)[/tex] approaches 0, so the whole limit approaches [tex]\( \frac{1}{4} \)[/tex].

Thus, the two expressions that define [tex]\( S_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity are:

[tex]\[ \lim_{n \to \infty} \frac{2^n}{4 \cdot 2^n} \][/tex]
[tex]\[ \lim_{n \to \infty} \frac{2^n - 1}{4 \cdot 2^n} \][/tex]

Both of these limits approach [tex]\( \frac{1}{4} \)[/tex], making an expression defining [tex]\( S_n \)[/tex]:

Answer:
[tex]\[ \lim_{n \to \infty} \frac{2^n}{4(2^n)} \quad \text{and} \quad \lim_{n \to \infty} \frac{2^n - 1}{4(2^n)} \][/tex]
Given that the second form is exactly provided in the options, the correct answer thus is:
[tex]\[ \lim_{n \to \infty} \frac{2^n - 1}{4(2^n)} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.