Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Consider the series [tex]\(\frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \ldots\)[/tex]

Which expression defines [tex]\(S_n\)[/tex]?

A. [tex]\(\lim_{n \rightarrow \infty} \frac{1}{2^n}\)[/tex]

B. [tex]\(\lim_{n \rightarrow \infty} \frac{1}{4(2^n)}\)[/tex]

C. [tex]\(\lim_{n \rightarrow \infty} \frac{2^n}{4(2^n)}\)[/tex]

D. [tex]\(\lim_{n \rightarrow \infty} \frac{2^n - 1}{4(2^n)}\)[/tex]

Sagot :

To solve this problem, we need to analyze the given series [tex]$\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots$[/tex] and determine which expression defines [tex]\( S_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity.

This series is a geometric series where the first term ([tex]\( a \)[/tex]) is [tex]\( \frac{1}{8} \)[/tex] and the common ratio ([tex]\( r \)[/tex]) is [tex]\( \frac{1}{2} \)[/tex]. The sum of the first [tex]\( n \)[/tex] terms ([tex]\( S_n \)[/tex]) of a geometric series can be given by:

[tex]\[ S_n = a \cdot \frac{1 - r^n}{1 - r} \][/tex]

For a geometric series with [tex]\( |r| < 1 \)[/tex], as [tex]\( n \)[/tex] approaches infinity, the term [tex]\( r^n \)[/tex] approaches 0. Therefore, the infinite sum ([tex]\( S \)[/tex]) is:

[tex]\[ S = \frac{a}{1 - r} \][/tex]

When we plug in the values [tex]\( a = \frac{1}{8} \)[/tex] and [tex]\( r = \frac{1}{2} \)[/tex], we get:

[tex]\[ S = \frac{\frac{1}{8}}{1 - \frac{1}{2}} = \frac{\frac{1}{8}}{\frac{1}{2}} = \frac{1}{8} \times \frac{2}{1} = \frac{1}{4} \][/tex]

Now, we need to check which of the given options approaches [tex]\( \frac{1}{4} \)[/tex] as [tex]\( n \)[/tex] approaches infinity.

1. [tex]\(\lim_{n \to \infty} \frac{1}{2^n}\)[/tex]

As [tex]\( n \)[/tex] approaches infinity, [tex]\( 2^n \)[/tex] grows very large, causing [tex]\( \frac{1}{2^n} \)[/tex] to approach 0.

2. [tex]\(\lim_{n \to \infty} \frac{1}{4(2^n)}\)[/tex]

Similarly, [tex]\( 4(2^n) \)[/tex] grows very large as [tex]\( n \)[/tex] approaches infinity, causing [tex]\( \frac{1}{4(2^n)} \)[/tex] to also approach 0.

3. [tex]\(\lim_{n \to \infty} \frac{2^n}{4(2^n)}\)[/tex]

Here, the term [tex]\( \frac{2^n}{4(2^n)} \)[/tex] simplifies to [tex]\( \frac{2^n}{4 \cdot 2^n} = \frac{2^n}{2^{n+2}} = \frac{1}{4} \)[/tex]. As [tex]\( n \)[/tex] approaches infinity, this limit equals [tex]\( \frac{1}{4} \)[/tex].

4. [tex]\(\lim_{n \to \infty} \frac{2^n - 1}{4(2^n)}\)[/tex]

This expression simplifies to [tex]\( \frac{2^n - 1}{4 \cdot 2^n} = \frac{2^n}{4 \cdot 2^n} - \frac{1}{4 \cdot 2^n} = \frac{1}{4} - \frac{1}{4 \cdot 2^n} \)[/tex]. As [tex]\( n \)[/tex] approaches infinity, [tex]\( \frac{1}{4 \cdot 2^n} \)[/tex] approaches 0, so the whole limit approaches [tex]\( \frac{1}{4} \)[/tex].

Thus, the two expressions that define [tex]\( S_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity are:

[tex]\[ \lim_{n \to \infty} \frac{2^n}{4 \cdot 2^n} \][/tex]
[tex]\[ \lim_{n \to \infty} \frac{2^n - 1}{4 \cdot 2^n} \][/tex]

Both of these limits approach [tex]\( \frac{1}{4} \)[/tex], making an expression defining [tex]\( S_n \)[/tex]:

Answer:
[tex]\[ \lim_{n \to \infty} \frac{2^n}{4(2^n)} \quad \text{and} \quad \lim_{n \to \infty} \frac{2^n - 1}{4(2^n)} \][/tex]
Given that the second form is exactly provided in the options, the correct answer thus is:
[tex]\[ \lim_{n \to \infty} \frac{2^n - 1}{4(2^n)} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.