At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the correct equation that the theater company could solve to find the number of price increases [tex]\( x \)[/tex] and still achieve a revenue of \[tex]$1,700, let's break down the problem step-by-step:
1. Identify the initial conditions:
- Initial ticket price: \$[/tex]8.50
- Initial tickets sold: 200
2. Determine the changes per increment:
- Price increase per increment: \[tex]$0.25 - Decrease in ticket sales per increment: 5 tickets 3. Set up the revenue equation: The revenue \( R \) is the product of the price per ticket and the number of tickets sold. If \( x \) is the number of price increments of \$[/tex]0.25, the new ticket price becomes [tex]\( \$8.50 + \$0.25 \times x \)[/tex] and the new number of tickets sold is [tex]\( 200 - 5 \times x \)[/tex].
So, the revenue equation is:
[tex]\[ R = (\text{Initial price} + \text{price increase per increment} \times x) \times (\text{Initial tickets sold} - \text{decrease in ticket sales per increment} \times x) \][/tex]
Given the revenue is \$1,700, we substitute [tex]\( R = 1700 \)[/tex]:
[tex]\[ 1700 = (8.50 + 0.25x)(200 - 5x) \][/tex]
4. Expand and simplify the equation:
First, expand the right side:
[tex]\[ 1700 = (8.50 \times 200) + (8.50 \times -5x) + (0.25x \times 200) + (0.25x \times -5x) \][/tex]
Simplify each term:
[tex]\[ 1700 = 1700 - 42.5x + 50x - 1.25x^2 \][/tex]
Combine like terms:
[tex]\[ 1700 = 1700 + 7.5x - 1.25x^2 \][/tex]
5. Move all terms to one side to form a quadratic equation:
[tex]\[ 1700 - 1700 = -1.25x^2 + 7.5x \][/tex]
Simplify the equation:
[tex]\[ 0 = -1.25x^2 + 7.5x \][/tex]
6. Compare with the given choices:
- Choice A: [tex]\(-1.25 x^2 - 7.5 x - 1,700 = 0\)[/tex]
- Choice B: [tex]\(-1.25 x^2 - 7.5 x = 0\)[/tex]
- Choice C: [tex]\(-1.25 x^2 + 7.5 x = 0\)[/tex]
- Choice D: [tex]\(-1.25 x^2 + 7.5 x - 1,700 = 0\)[/tex]
The correct equation is:
[tex]\[ 0 = -1.25x^2 + 7.5x \][/tex]
This matches choice B.
Therefore, the correct answer is:
[tex]\[ \boxed{\text{B}} \][/tex]
- Initial tickets sold: 200
2. Determine the changes per increment:
- Price increase per increment: \[tex]$0.25 - Decrease in ticket sales per increment: 5 tickets 3. Set up the revenue equation: The revenue \( R \) is the product of the price per ticket and the number of tickets sold. If \( x \) is the number of price increments of \$[/tex]0.25, the new ticket price becomes [tex]\( \$8.50 + \$0.25 \times x \)[/tex] and the new number of tickets sold is [tex]\( 200 - 5 \times x \)[/tex].
So, the revenue equation is:
[tex]\[ R = (\text{Initial price} + \text{price increase per increment} \times x) \times (\text{Initial tickets sold} - \text{decrease in ticket sales per increment} \times x) \][/tex]
Given the revenue is \$1,700, we substitute [tex]\( R = 1700 \)[/tex]:
[tex]\[ 1700 = (8.50 + 0.25x)(200 - 5x) \][/tex]
4. Expand and simplify the equation:
First, expand the right side:
[tex]\[ 1700 = (8.50 \times 200) + (8.50 \times -5x) + (0.25x \times 200) + (0.25x \times -5x) \][/tex]
Simplify each term:
[tex]\[ 1700 = 1700 - 42.5x + 50x - 1.25x^2 \][/tex]
Combine like terms:
[tex]\[ 1700 = 1700 + 7.5x - 1.25x^2 \][/tex]
5. Move all terms to one side to form a quadratic equation:
[tex]\[ 1700 - 1700 = -1.25x^2 + 7.5x \][/tex]
Simplify the equation:
[tex]\[ 0 = -1.25x^2 + 7.5x \][/tex]
6. Compare with the given choices:
- Choice A: [tex]\(-1.25 x^2 - 7.5 x - 1,700 = 0\)[/tex]
- Choice B: [tex]\(-1.25 x^2 - 7.5 x = 0\)[/tex]
- Choice C: [tex]\(-1.25 x^2 + 7.5 x = 0\)[/tex]
- Choice D: [tex]\(-1.25 x^2 + 7.5 x - 1,700 = 0\)[/tex]
The correct equation is:
[tex]\[ 0 = -1.25x^2 + 7.5x \][/tex]
This matches choice B.
Therefore, the correct answer is:
[tex]\[ \boxed{\text{B}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.