Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To graph the exponential function [tex]\( p(x) = 4 \cdot (0.75)^x + 3 \)[/tex], we need to understand its behavior and then plot key points:
1. Identify Key Components:
- The base exponential function is [tex]\( (0.75)^x \)[/tex].
- It is scaled by a factor of 4.
- It is vertically translated upward by 3 units.
2. Behavior of the Function:
- As [tex]\( x \)[/tex] increases, [tex]\( (0.75)^x \)[/tex] gets smaller because [tex]\( 0.75 \)[/tex] is less than 1.
- As [tex]\( x \)[/tex] decreases (negative values), [tex]\( (0.75)^x \)[/tex] grows larger because [tex]\( (0.75)^x \)[/tex] becomes a larger fraction (since you're dividing by increasingly smaller positive numbers).
3. Determine Key Points to Plot:
Here we calculate some key points to get a good sense of the function’s shape:
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ p(-2) = 4 \cdot (0.75)^{-2} + 3 = 4 \cdot \left(\frac{1}{0.75}\right)^2 + 3 = 4 \cdot \left(\frac{4}{3}\right)^2 + 3 = 4 \cdot \frac{16}{9} + 3 = \frac{64}{9} + 3 \approx 10.11 \][/tex]
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ p(-1) = 4 \cdot (0.75)^{-1} + 3 = 4 \cdot \left(\frac{1}{0.75}\right) + 3 = 4 \cdot \frac{4}{3} + 3 = \frac{16}{3} + 3 \approx 8.33 \][/tex]
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ p(0) = 4 \cdot (0.75)^0 + 3 = 4 \cdot 1 + 3 = 4 + 3 = 7 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ p(1) = 4 \cdot (0.75)^1 + 3 = 4 \cdot 0.75 + 3 = 3 + 3 = 6 \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ p(2) = 4 \cdot (0.75)^2 + 3 = 4 \cdot 0.5625 + 3 = 2.25 + 3 = 5.25 \][/tex]
4. Asymptotic Behavior:
- As [tex]\( x \to \infty \)[/tex], [tex]\( (0.75)^x \)[/tex] approaches 0, and thus [tex]\( p(x) \to 3 \)[/tex]. The horizontal line [tex]\( y = 3 \)[/tex] is a horizontal asymptote.
5. Graph the Function:
- Plot the points calculated: [tex]\( (-2, 10.11) \)[/tex], [tex]\( (-1, 8.33) \)[/tex], [tex]\( (0, 7) \)[/tex], [tex]\( (1, 6) \)[/tex], and [tex]\( (2, 5.25) \)[/tex].
- Sketch the curve that approaches 3 as [tex]\( x \)[/tex] increases.
- Remember to include the asymptotic line at [tex]\( y = 3 \)[/tex].
Here is an illustrative sketch on how you can expect the graph to look:
[tex]\[ \begin{array}{c} \begin{tikzpicture} \begin{axis}[ axis lines = middle, xlabel = \(x\), ylabel = {\(p(x)\)}, domain=-4:4, samples=100, grid=major ] \addplot [ thick, domain=-4:4, samples=100, color=blue, ] {4*(0.75)^x + 3}; \addlegendentry{\(p(x) = 4 \cdot (0.75)^x + 3\)}; \draw[dashed] (axis cs:-4,3) -- (axis cs:4,3); \node at (axis cs:2.5,3.3) {y=3 (Asymptote)}; \end{axis} \end{tikzpicture} \end{array} \][/tex]
Notice:
- As [tex]\( x \)[/tex] tends to very large positive values, the function approaches the horizontal asymptote [tex]\( y = 3 \)[/tex].
- The exponential decline is rapid for negative [tex]\( x \)[/tex]-values and gradually flattens as [tex]\( x \)[/tex] increases.
This detailed plot shows the overall trend and confirms our understanding of the exponential function [tex]\( p(x) = 4 \cdot (0.75)^x + 3 \)[/tex].
1. Identify Key Components:
- The base exponential function is [tex]\( (0.75)^x \)[/tex].
- It is scaled by a factor of 4.
- It is vertically translated upward by 3 units.
2. Behavior of the Function:
- As [tex]\( x \)[/tex] increases, [tex]\( (0.75)^x \)[/tex] gets smaller because [tex]\( 0.75 \)[/tex] is less than 1.
- As [tex]\( x \)[/tex] decreases (negative values), [tex]\( (0.75)^x \)[/tex] grows larger because [tex]\( (0.75)^x \)[/tex] becomes a larger fraction (since you're dividing by increasingly smaller positive numbers).
3. Determine Key Points to Plot:
Here we calculate some key points to get a good sense of the function’s shape:
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ p(-2) = 4 \cdot (0.75)^{-2} + 3 = 4 \cdot \left(\frac{1}{0.75}\right)^2 + 3 = 4 \cdot \left(\frac{4}{3}\right)^2 + 3 = 4 \cdot \frac{16}{9} + 3 = \frac{64}{9} + 3 \approx 10.11 \][/tex]
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ p(-1) = 4 \cdot (0.75)^{-1} + 3 = 4 \cdot \left(\frac{1}{0.75}\right) + 3 = 4 \cdot \frac{4}{3} + 3 = \frac{16}{3} + 3 \approx 8.33 \][/tex]
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ p(0) = 4 \cdot (0.75)^0 + 3 = 4 \cdot 1 + 3 = 4 + 3 = 7 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ p(1) = 4 \cdot (0.75)^1 + 3 = 4 \cdot 0.75 + 3 = 3 + 3 = 6 \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ p(2) = 4 \cdot (0.75)^2 + 3 = 4 \cdot 0.5625 + 3 = 2.25 + 3 = 5.25 \][/tex]
4. Asymptotic Behavior:
- As [tex]\( x \to \infty \)[/tex], [tex]\( (0.75)^x \)[/tex] approaches 0, and thus [tex]\( p(x) \to 3 \)[/tex]. The horizontal line [tex]\( y = 3 \)[/tex] is a horizontal asymptote.
5. Graph the Function:
- Plot the points calculated: [tex]\( (-2, 10.11) \)[/tex], [tex]\( (-1, 8.33) \)[/tex], [tex]\( (0, 7) \)[/tex], [tex]\( (1, 6) \)[/tex], and [tex]\( (2, 5.25) \)[/tex].
- Sketch the curve that approaches 3 as [tex]\( x \)[/tex] increases.
- Remember to include the asymptotic line at [tex]\( y = 3 \)[/tex].
Here is an illustrative sketch on how you can expect the graph to look:
[tex]\[ \begin{array}{c} \begin{tikzpicture} \begin{axis}[ axis lines = middle, xlabel = \(x\), ylabel = {\(p(x)\)}, domain=-4:4, samples=100, grid=major ] \addplot [ thick, domain=-4:4, samples=100, color=blue, ] {4*(0.75)^x + 3}; \addlegendentry{\(p(x) = 4 \cdot (0.75)^x + 3\)}; \draw[dashed] (axis cs:-4,3) -- (axis cs:4,3); \node at (axis cs:2.5,3.3) {y=3 (Asymptote)}; \end{axis} \end{tikzpicture} \end{array} \][/tex]
Notice:
- As [tex]\( x \)[/tex] tends to very large positive values, the function approaches the horizontal asymptote [tex]\( y = 3 \)[/tex].
- The exponential decline is rapid for negative [tex]\( x \)[/tex]-values and gradually flattens as [tex]\( x \)[/tex] increases.
This detailed plot shows the overall trend and confirms our understanding of the exponential function [tex]\( p(x) = 4 \cdot (0.75)^x + 3 \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.