Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.


describe and justify the methods you used to solve the quadratic equations in parts a and b

those equations are:
A-2x(x+1.5)=-1
answer: x= -1 or -.5


Describe And Justify The Methods You Used To Solve The Quadratic Equations In Parts A And B Those Equations Are A2xx151 Answer X 1 Or 5 class=

Sagot :

Answer:

A

[tex]\frac{3 \pm\sqrt{17} }{-4}[/tex]

approx. 0.281, -1.781

B

(-18+-sqrt(204))/6

approx. -0.62, -5.38

Step-by-step explanation:

Finding The Zeroes in a Quadratic Function

In a quadratic function given as the general form:

[tex]ax^2 + bx +c=y[/tex]

the zeroes can be found using the formula:

[tex]x = \frac{-b \pm\sqrt{b^2-4ac} }{2a}[/tex]

a corresponds to the coefficient stuck to the squared variable,

b corresponds to the coefficient stuck to the standard variable

c corresponds to the constant

Problem Solving

In order to turn the given function into the general function, distribute everything correctly and put all values on one side of the equation so that the equation is equals to 0.

PART A

[tex]-2x(x+1.5)=-1[/tex]

[tex]-2x^2-3x=-1[/tex]

[tex]-2x^2-3x+1=0[/tex]

Now extract and solve for the zeroes according the formula given on top.

a = -2

b = -3

c = 1

[tex]\frac{-(-3) \pm\sqrt{(-3)^2-4(-2)(1)} }{2(-2)}[/tex]

[tex]\frac{-(-3) \pm\sqrt{9+8} }{-4}[/tex]

[tex]\frac{3 \pm\sqrt{17} }{-4}[/tex]

PART B

[tex]3x(x+6) =-10[/tex]

[tex]3x^2 + 18x=-10[/tex]

[tex]3x^2+18x+10=0[/tex]

Now extract and solve for the zeroes according the formula given on top.

a = 3

b = 18

c = 10

[tex]\frac{-18\pm\sqrt{18^2-4(3)(10)}}{2(3)}[/tex]

[tex]\frac{-18\pm\sqrt{324-120} }{6}[/tex]

[tex]\frac{-18\pm\sqrt{204} }{6}[/tex]