Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.


describe and justify the methods you used to solve the quadratic equations in parts a and b

those equations are:
A-2x(x+1.5)=-1
answer: x= -1 or -.5


Describe And Justify The Methods You Used To Solve The Quadratic Equations In Parts A And B Those Equations Are A2xx151 Answer X 1 Or 5 class=

Sagot :

Answer:

A

[tex]\frac{3 \pm\sqrt{17} }{-4}[/tex]

approx. 0.281, -1.781

B

(-18+-sqrt(204))/6

approx. -0.62, -5.38

Step-by-step explanation:

Finding The Zeroes in a Quadratic Function

In a quadratic function given as the general form:

[tex]ax^2 + bx +c=y[/tex]

the zeroes can be found using the formula:

[tex]x = \frac{-b \pm\sqrt{b^2-4ac} }{2a}[/tex]

a corresponds to the coefficient stuck to the squared variable,

b corresponds to the coefficient stuck to the standard variable

c corresponds to the constant

Problem Solving

In order to turn the given function into the general function, distribute everything correctly and put all values on one side of the equation so that the equation is equals to 0.

PART A

[tex]-2x(x+1.5)=-1[/tex]

[tex]-2x^2-3x=-1[/tex]

[tex]-2x^2-3x+1=0[/tex]

Now extract and solve for the zeroes according the formula given on top.

a = -2

b = -3

c = 1

[tex]\frac{-(-3) \pm\sqrt{(-3)^2-4(-2)(1)} }{2(-2)}[/tex]

[tex]\frac{-(-3) \pm\sqrt{9+8} }{-4}[/tex]

[tex]\frac{3 \pm\sqrt{17} }{-4}[/tex]

PART B

[tex]3x(x+6) =-10[/tex]

[tex]3x^2 + 18x=-10[/tex]

[tex]3x^2+18x+10=0[/tex]

Now extract and solve for the zeroes according the formula given on top.

a = 3

b = 18

c = 10

[tex]\frac{-18\pm\sqrt{18^2-4(3)(10)}}{2(3)}[/tex]

[tex]\frac{-18\pm\sqrt{324-120} }{6}[/tex]

[tex]\frac{-18\pm\sqrt{204} }{6}[/tex]