Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Which function has a vertex at the origin?

A. [tex]\( f(x) = (x+4)^2 \)[/tex]
B. [tex]\( f(x) = x(x-4) \)[/tex]
C. [tex]\( f(x) = (x-4)(x+4) \)[/tex]
D. [tex]\( f(x) = -x^2 \)[/tex]


Sagot :

To determine which function has its vertex at the origin [tex]\((0,0)\)[/tex], we analyze the vertex of each given quadratic function.

1. Function: [tex]\( f(x) = (x+4)^2 \)[/tex]
- This is in vertex form, [tex]\( f(x) = (x-h)^2 + k \)[/tex], where the vertex is located at [tex]\((h, k)\)[/tex].
- Here, [tex]\( h = -4 \)[/tex] and [tex]\( k = 0 \)[/tex], so the vertex is [tex]\((-4, 0)\)[/tex].

2. Function: [tex]\( f(x) = x(x-4) \)[/tex]
- Expand the function: [tex]\( f(x) = x^2 - 4x \)[/tex].
- For a quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex], the vertex occurs at [tex]\( x = -\frac{b}{2a} \)[/tex].
- Here, [tex]\( a = 1 \)[/tex] and [tex]\( b = -4 \)[/tex], so [tex]\( x = -\frac{-4}{2 \cdot 1} = 2 \)[/tex].
- Substitute [tex]\( x = 2 \)[/tex] back into the function: [tex]\( f(2) = 2^2 - 4 \cdot 2 = 4 - 8 = -4 \)[/tex].
- The vertex is [tex]\( (2, -4) \)[/tex].

3. Function: [tex]\( f(x) = (x-4)(x+4) \)[/tex]
- Expand the function: [tex]\( f(x) = x^2 - 16 \)[/tex].
- This is in standard form [tex]\( f(x) = ax^2 + bx + c \)[/tex] with [tex]\( a = 1 \)[/tex], [tex]\( b = 0 \)[/tex], and [tex]\( c = -16 \)[/tex].
- The vertex occurs at [tex]\( x = -\frac{b}{2a} = 0 \)[/tex].
- Substitute [tex]\( x = 0 \)[/tex] back into the function: [tex]\( f(0) = 0^2 - 16 = -16 \)[/tex].
- The vertex is [tex]\( (0, -16) \)[/tex].

4. Function: [tex]\( f(x) = -x^2 \)[/tex]
- This is a downward-opening parabola (since the coefficient of [tex]\( x^2 \)[/tex] is negative).
- The vertex form of this quadratic function is already given by [tex]\( f(x) = -x^2 + 0 \)[/tex].
- Here, the vertex is at [tex]\( (0, 0) \)[/tex].

Among the given functions, the one with the vertex at the origin, [tex]\((0, 0)\)[/tex], is:
[tex]\[ f(x) = -x^2 \][/tex]

Thus, the correct answer is:

4. [tex]\( f(x) = -x^2 \)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.