Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which function has its vertex at the origin [tex]\((0,0)\)[/tex], we analyze the vertex of each given quadratic function.
1. Function: [tex]\( f(x) = (x+4)^2 \)[/tex]
- This is in vertex form, [tex]\( f(x) = (x-h)^2 + k \)[/tex], where the vertex is located at [tex]\((h, k)\)[/tex].
- Here, [tex]\( h = -4 \)[/tex] and [tex]\( k = 0 \)[/tex], so the vertex is [tex]\((-4, 0)\)[/tex].
2. Function: [tex]\( f(x) = x(x-4) \)[/tex]
- Expand the function: [tex]\( f(x) = x^2 - 4x \)[/tex].
- For a quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex], the vertex occurs at [tex]\( x = -\frac{b}{2a} \)[/tex].
- Here, [tex]\( a = 1 \)[/tex] and [tex]\( b = -4 \)[/tex], so [tex]\( x = -\frac{-4}{2 \cdot 1} = 2 \)[/tex].
- Substitute [tex]\( x = 2 \)[/tex] back into the function: [tex]\( f(2) = 2^2 - 4 \cdot 2 = 4 - 8 = -4 \)[/tex].
- The vertex is [tex]\( (2, -4) \)[/tex].
3. Function: [tex]\( f(x) = (x-4)(x+4) \)[/tex]
- Expand the function: [tex]\( f(x) = x^2 - 16 \)[/tex].
- This is in standard form [tex]\( f(x) = ax^2 + bx + c \)[/tex] with [tex]\( a = 1 \)[/tex], [tex]\( b = 0 \)[/tex], and [tex]\( c = -16 \)[/tex].
- The vertex occurs at [tex]\( x = -\frac{b}{2a} = 0 \)[/tex].
- Substitute [tex]\( x = 0 \)[/tex] back into the function: [tex]\( f(0) = 0^2 - 16 = -16 \)[/tex].
- The vertex is [tex]\( (0, -16) \)[/tex].
4. Function: [tex]\( f(x) = -x^2 \)[/tex]
- This is a downward-opening parabola (since the coefficient of [tex]\( x^2 \)[/tex] is negative).
- The vertex form of this quadratic function is already given by [tex]\( f(x) = -x^2 + 0 \)[/tex].
- Here, the vertex is at [tex]\( (0, 0) \)[/tex].
Among the given functions, the one with the vertex at the origin, [tex]\((0, 0)\)[/tex], is:
[tex]\[ f(x) = -x^2 \][/tex]
Thus, the correct answer is:
4. [tex]\( f(x) = -x^2 \)[/tex]
1. Function: [tex]\( f(x) = (x+4)^2 \)[/tex]
- This is in vertex form, [tex]\( f(x) = (x-h)^2 + k \)[/tex], where the vertex is located at [tex]\((h, k)\)[/tex].
- Here, [tex]\( h = -4 \)[/tex] and [tex]\( k = 0 \)[/tex], so the vertex is [tex]\((-4, 0)\)[/tex].
2. Function: [tex]\( f(x) = x(x-4) \)[/tex]
- Expand the function: [tex]\( f(x) = x^2 - 4x \)[/tex].
- For a quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex], the vertex occurs at [tex]\( x = -\frac{b}{2a} \)[/tex].
- Here, [tex]\( a = 1 \)[/tex] and [tex]\( b = -4 \)[/tex], so [tex]\( x = -\frac{-4}{2 \cdot 1} = 2 \)[/tex].
- Substitute [tex]\( x = 2 \)[/tex] back into the function: [tex]\( f(2) = 2^2 - 4 \cdot 2 = 4 - 8 = -4 \)[/tex].
- The vertex is [tex]\( (2, -4) \)[/tex].
3. Function: [tex]\( f(x) = (x-4)(x+4) \)[/tex]
- Expand the function: [tex]\( f(x) = x^2 - 16 \)[/tex].
- This is in standard form [tex]\( f(x) = ax^2 + bx + c \)[/tex] with [tex]\( a = 1 \)[/tex], [tex]\( b = 0 \)[/tex], and [tex]\( c = -16 \)[/tex].
- The vertex occurs at [tex]\( x = -\frac{b}{2a} = 0 \)[/tex].
- Substitute [tex]\( x = 0 \)[/tex] back into the function: [tex]\( f(0) = 0^2 - 16 = -16 \)[/tex].
- The vertex is [tex]\( (0, -16) \)[/tex].
4. Function: [tex]\( f(x) = -x^2 \)[/tex]
- This is a downward-opening parabola (since the coefficient of [tex]\( x^2 \)[/tex] is negative).
- The vertex form of this quadratic function is already given by [tex]\( f(x) = -x^2 + 0 \)[/tex].
- Here, the vertex is at [tex]\( (0, 0) \)[/tex].
Among the given functions, the one with the vertex at the origin, [tex]\((0, 0)\)[/tex], is:
[tex]\[ f(x) = -x^2 \][/tex]
Thus, the correct answer is:
4. [tex]\( f(x) = -x^2 \)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.