Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Which set of numbers can represent the side lengths, in inches, of an acute triangle?

A. 4, 5, 7
B. 5, 7, 8
C. 6, 7, 10
D. 7, 9, 12


Sagot :

To determine which set of side lengths can form the side lengths of an acute triangle, we need to examine each set and apply the criteria for acute triangles. A triangle is acute if all its angles are less than 90 degrees. For this to be true, the square of the length of each side must be less than the sum of the squares of the lengths of the other two sides. Mathematically, for a triangle with sides [tex]\( a, b, \)[/tex] and [tex]\( c \)[/tex]:

[tex]\[ a^2 + b^2 > c^2 \][/tex]
[tex]\[ a^2 + c^2 > b^2 \][/tex]
[tex]\[ b^2 + c^2 > a^2 \][/tex]

We will check each set of side lengths:

1. Set: [tex]\( (4, 5, 7) \)[/tex]
- Check [tex]\( 4^2 + 5^2 > 7^2 \)[/tex]:
[tex]\[ 16 + 25 > 49 \][/tex]
[tex]\[ 41 \not> 49 \][/tex]
- Since [tex]\( 4^2 + 5^2 \not> 7^2 \)[/tex], this set does not form an acute triangle.

2. Set: [tex]\( (5, 7, 8) \)[/tex]
- Check [tex]\( 5^2 + 7^2 > 8^2 \)[/tex]:
[tex]\[ 25 + 49 > 64 \][/tex]
[tex]\[ 74 > 64 \][/tex] (true)
- Check [tex]\( 5^2 + 8^2 > 7^2 \)[/tex]:
[tex]\[ 25 + 64 > 49 \][/tex]
[tex]\[ 89 > 49 \][/tex] (true)
- Check [tex]\( 7^2 + 8^2 > 5^2 \)[/tex]:
[tex]\[ 49 + 64 > 25 \][/tex]
[tex]\[ 113 > 25 \][/tex] (true)
- All conditions are met, so [tex]\( (5, 7, 8) \)[/tex] can form an acute triangle.

3. Set: [tex]\( (6, 7, 10) \)[/tex]
- Check [tex]\( 6^2 + 7^2 > 10^2 \)[/tex]:
[tex]\[ 36 + 49 > 100 \][/tex]
[tex]\[ 85 \not> 100 \][/tex]
- Since [tex]\( 6^2 + 7^2 \not> 10^2 \)[/tex], this set does not form an acute triangle.

4. Set: [tex]\( (7, 9, 12) \)[/tex]
- Check [tex]\( 7^2 + 9^2 > 12^2 \)[/tex]:
[tex]\[ 49 + 81 > 144 \][/tex]
[tex]\[ 130 \not> 144 \][/tex]
- Since [tex]\( 7^2 + 9^2 \not> 12^2 \)[/tex], this set does not form an acute triangle.

Thus, the set of numbers that can represent the side lengths, in inches, of an acute triangle is:

[tex]\[ (5, 7, 8) \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.