Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the equation that can be used to solve for Carey's hourly rate, [tex]\( c \)[/tex], we start by understanding the relationship between Anderson's and Carey's earnings.
According to the problem, Anderson earns \[tex]$6 per hour and this amount is \$[/tex]1 more than half of Carey's hourly rate. We need to translate this relationship into a mathematical equation.
Let's break it down step-by-step:
1. Carey's hourly rate is [tex]\( c \)[/tex].
2. Half of Carey's hourly rate is [tex]\(\frac{1}{2} c\)[/tex].
3. Anderson earns \[tex]$1 more than half of Carey's hourly rate. Therefore, we add 1 to half of Carey's rate: \[ \frac{1}{2} c + 1 \] 4. According to the problem, Anderson's hourly rate is \$[/tex]6. Therefore, we set up the equation:
[tex]\[ \frac{1}{2} c + 1 = 6 \][/tex]
Among the given options, the equation that represents this relationship is:
[tex]\[ \frac{1}{2} c + 1 = 6 \][/tex]
Thus, the correct equation to solve for Carey's hourly rate, [tex]\(c\)[/tex], is:
[tex]\[ \boxed{\frac{1}{2} c + 1 = 6} \][/tex]
According to the problem, Anderson earns \[tex]$6 per hour and this amount is \$[/tex]1 more than half of Carey's hourly rate. We need to translate this relationship into a mathematical equation.
Let's break it down step-by-step:
1. Carey's hourly rate is [tex]\( c \)[/tex].
2. Half of Carey's hourly rate is [tex]\(\frac{1}{2} c\)[/tex].
3. Anderson earns \[tex]$1 more than half of Carey's hourly rate. Therefore, we add 1 to half of Carey's rate: \[ \frac{1}{2} c + 1 \] 4. According to the problem, Anderson's hourly rate is \$[/tex]6. Therefore, we set up the equation:
[tex]\[ \frac{1}{2} c + 1 = 6 \][/tex]
Among the given options, the equation that represents this relationship is:
[tex]\[ \frac{1}{2} c + 1 = 6 \][/tex]
Thus, the correct equation to solve for Carey's hourly rate, [tex]\(c\)[/tex], is:
[tex]\[ \boxed{\frac{1}{2} c + 1 = 6} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.