Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

The zip line from the top of a building to a point 91 feet from the base forms an angle of depression that is 39". How long is the zip line? Round to the nearest 100th.
length of zip line = ft


Sagot :

Answer:

Step-by-step explanation:

To find the length of the zip line, we can use trigonometry, specifically the tangent function, since we have the angle of depression and the horizontal distance:

Given:

- Angle of depression \( \theta = 39^\circ \)

- Horizontal distance \( x = 91 \) feet

Let \( L \) denote the length of the zip line.

The tangent of the angle of depression is defined as the ratio of the opposite side (height of the building) to the adjacent side (horizontal distance):

\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{L}{x} \]

Substitute the given values:

\[ \tan(39^\circ) = \frac{L}{91} \]

Now, solve for \( L \):

\[ L = 91 \cdot \tan(39^\circ) \]

Using a calculator:

\[ L \approx 91 \cdot \tan(39^\circ) \]

\[ L \approx 91 \cdot 0.809784 \] (rounded to the nearest 100th)

\[ L \approx 73.79 \]

Therefore, the length of the zip line, rounded to the nearest hundredth, is \( \boxed{73.79} \) feet.

Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.