Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the problem, we need to understand the different forms of a conditional statement [tex]\( p \rightarrow q \)[/tex]. Here are the definitions:
1. Original conditional statement: [tex]\( p \rightarrow q \)[/tex]
- This states that if [tex]\( p \)[/tex] is true, then [tex]\( q \)[/tex] must also be true.
2. Converse of the original conditional statement: [tex]\( q \rightarrow p \)[/tex]
- This is formed by swapping the hypothesis and the conclusion of the original statement. If [tex]\( q \)[/tex] is true, then [tex]\( p \)[/tex] must also be true.
3. Contrapositive of the original conditional statement: [tex]\( \sim q \rightarrow \sim p \)[/tex]
- The contrapositive is formed by negating both the hypothesis and conclusion of the original statement and then reversing them. If [tex]\( q \)[/tex] is not true, then [tex]\( p \)[/tex] is not true either.
4. Inverse of the original conditional statement: [tex]\( \sim p \rightarrow \sim q \)[/tex]
- The inverse is formed by negating both the hypothesis and conclusion of the original statement. If [tex]\( p \)[/tex] is not true, then [tex]\( q \)[/tex] is not true either.
Given the statement [tex]\( \sim p \rightarrow \sim q \)[/tex]:
- This statement negates both the hypothesis ([tex]\( \sim p \)[/tex]) and conclusion ([tex]\( \sim q \)[/tex]) of the original statement [tex]\( p \rightarrow q \)[/tex].
From the definitions provided above, this corresponds to the inverse of the original conditional statement.
Thus, [tex]\(\sim p \rightarrow \sim q\)[/tex] represents the inverse of the original conditional statement.
Therefore, the answer is:
the inverse of the original conditional statement.
1. Original conditional statement: [tex]\( p \rightarrow q \)[/tex]
- This states that if [tex]\( p \)[/tex] is true, then [tex]\( q \)[/tex] must also be true.
2. Converse of the original conditional statement: [tex]\( q \rightarrow p \)[/tex]
- This is formed by swapping the hypothesis and the conclusion of the original statement. If [tex]\( q \)[/tex] is true, then [tex]\( p \)[/tex] must also be true.
3. Contrapositive of the original conditional statement: [tex]\( \sim q \rightarrow \sim p \)[/tex]
- The contrapositive is formed by negating both the hypothesis and conclusion of the original statement and then reversing them. If [tex]\( q \)[/tex] is not true, then [tex]\( p \)[/tex] is not true either.
4. Inverse of the original conditional statement: [tex]\( \sim p \rightarrow \sim q \)[/tex]
- The inverse is formed by negating both the hypothesis and conclusion of the original statement. If [tex]\( p \)[/tex] is not true, then [tex]\( q \)[/tex] is not true either.
Given the statement [tex]\( \sim p \rightarrow \sim q \)[/tex]:
- This statement negates both the hypothesis ([tex]\( \sim p \)[/tex]) and conclusion ([tex]\( \sim q \)[/tex]) of the original statement [tex]\( p \rightarrow q \)[/tex].
From the definitions provided above, this corresponds to the inverse of the original conditional statement.
Thus, [tex]\(\sim p \rightarrow \sim q\)[/tex] represents the inverse of the original conditional statement.
Therefore, the answer is:
the inverse of the original conditional statement.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.