At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Solve the following inequality:

4c < 14 - 3c

Sagot :

To solve the inequality [tex]\( 4c < 14 - 3c \)[/tex], let's go through the process step-by-step.

1. Combine like terms involving [tex]\( c \)[/tex]:
Start by moving all terms containing [tex]\( c \)[/tex] to one side of the inequality. We can accomplish this by adding [tex]\( 3c \)[/tex] to both sides of the inequality:
[tex]\[ 4c + 3c < 14 - 3c + 3c \][/tex]
Simplifying this, we get:
[tex]\[ 7c < 14 \][/tex]

2. Isolate the variable [tex]\( c \)[/tex]:
Next, we need to isolate [tex]\( c \)[/tex] by dividing both sides of the inequality by 7:
[tex]\[ \frac{7c}{7} < \frac{14}{7} \][/tex]
Simplifying this, we obtain:
[tex]\[ c < 2 \][/tex]

Thus, the solution to the inequality is [tex]\( c < 2 \)[/tex].

Since there are no specific domain restrictions noted for [tex]\( c \)[/tex], it can be any real number less than 2. Therefore, the solution in interval notation can be written as:
[tex]\[ (-\infty, 2) \][/tex]

In summary, [tex]\( c \)[/tex] must be less than 2 for [tex]\( 4c < 14 - 3c \)[/tex] to hold true.