Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To graph the function [tex]\( f(x) = -\frac{3}{5}x + 2 \)[/tex], follow these steps:
1. Identify the type of function:
The given function is a linear equation in the form [tex]\( f(x) = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
2. Determine the slope and y-intercept:
- Slope ([tex]\( m \)[/tex]) = [tex]\(-\frac{3}{5}\)[/tex]
- Y-intercept ([tex]\( b \)[/tex]) = 2
3. Plot the y-intercept:
The y-intercept is the point where the graph crosses the y-axis. For this function, it is the point [tex]\( (0, 2) \)[/tex]. Plot this point on the graph.
4. Use the slope to find another point:
The slope [tex]\(-\frac{3}{5}\)[/tex] means that for every increase of 5 units in the x-direction, the function decreases by 3 units in the y-direction.
Starting from the y-intercept [tex]\( (0, 2) \)[/tex]:
- Move 5 units to the right (positive x-direction) and then 3 units down (negative y-direction).
- This gives the point [tex]\( (5, 2 - 3) = (5, -1) \)[/tex].
5. Plot the second point:
Plot the point [tex]\( (5, -1) \)[/tex] on the graph.
6. Draw the line:
Draw a straight line through the points [tex]\( (0, 2) \)[/tex] and [tex]\( (5, -1) \)[/tex]. This line represents the function [tex]\( f(x) = -\frac{3}{5}x + 2 \)[/tex].
7. Check additional points (optional, for accuracy):
If desired, you can calculate and plot additional points:
- For [tex]\( x = -5 \)[/tex]:
[tex]\[ f(-5) = -\frac{3}{5}(-5) + 2 = 3 + 2 = 5 \][/tex]
Point: [tex]\( (-5, 5) \)[/tex]
- For [tex]\( x = 10 \)[/tex]:
[tex]\[ f(10) = -\frac{3}{5}(10) + 2 = -6 + 2 = -4 \][/tex]
Point: [tex]\( (10, -4) \)[/tex]
Plot these additional points to ensure the line is correctly drawn.
### Summary:
For further clarity, here is the visual representation:
1. Y-intercept point: [tex]\( (0, 2) \)[/tex]
2. Another calculated point using the slope: [tex]\( (5, -1) \)[/tex]
3. Optional additional points: [tex]\( (-5, 5) \)[/tex] and [tex]\( (10, -4) \)[/tex]
Finally, draw a straight line through these points on graph paper or a graphing tool. This line is the graph of the function [tex]\( f(x) = -\frac{3}{5}x + 2 \)[/tex].
### Graph:
You can create this graph on graph paper or use a graphing tool by plotting the points [tex]\( (0, 2) \)[/tex], [tex]\( (5, -1) \)[/tex], and additional points as described, then drawing a straight line through them.
1. Identify the type of function:
The given function is a linear equation in the form [tex]\( f(x) = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
2. Determine the slope and y-intercept:
- Slope ([tex]\( m \)[/tex]) = [tex]\(-\frac{3}{5}\)[/tex]
- Y-intercept ([tex]\( b \)[/tex]) = 2
3. Plot the y-intercept:
The y-intercept is the point where the graph crosses the y-axis. For this function, it is the point [tex]\( (0, 2) \)[/tex]. Plot this point on the graph.
4. Use the slope to find another point:
The slope [tex]\(-\frac{3}{5}\)[/tex] means that for every increase of 5 units in the x-direction, the function decreases by 3 units in the y-direction.
Starting from the y-intercept [tex]\( (0, 2) \)[/tex]:
- Move 5 units to the right (positive x-direction) and then 3 units down (negative y-direction).
- This gives the point [tex]\( (5, 2 - 3) = (5, -1) \)[/tex].
5. Plot the second point:
Plot the point [tex]\( (5, -1) \)[/tex] on the graph.
6. Draw the line:
Draw a straight line through the points [tex]\( (0, 2) \)[/tex] and [tex]\( (5, -1) \)[/tex]. This line represents the function [tex]\( f(x) = -\frac{3}{5}x + 2 \)[/tex].
7. Check additional points (optional, for accuracy):
If desired, you can calculate and plot additional points:
- For [tex]\( x = -5 \)[/tex]:
[tex]\[ f(-5) = -\frac{3}{5}(-5) + 2 = 3 + 2 = 5 \][/tex]
Point: [tex]\( (-5, 5) \)[/tex]
- For [tex]\( x = 10 \)[/tex]:
[tex]\[ f(10) = -\frac{3}{5}(10) + 2 = -6 + 2 = -4 \][/tex]
Point: [tex]\( (10, -4) \)[/tex]
Plot these additional points to ensure the line is correctly drawn.
### Summary:
For further clarity, here is the visual representation:
1. Y-intercept point: [tex]\( (0, 2) \)[/tex]
2. Another calculated point using the slope: [tex]\( (5, -1) \)[/tex]
3. Optional additional points: [tex]\( (-5, 5) \)[/tex] and [tex]\( (10, -4) \)[/tex]
Finally, draw a straight line through these points on graph paper or a graphing tool. This line is the graph of the function [tex]\( f(x) = -\frac{3}{5}x + 2 \)[/tex].
### Graph:
You can create this graph on graph paper or use a graphing tool by plotting the points [tex]\( (0, 2) \)[/tex], [tex]\( (5, -1) \)[/tex], and additional points as described, then drawing a straight line through them.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.