At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure! Let's factor the given expression step-by-step.
The expression we need to factor is:
[tex]\[ 25x^2 - 16y^2 \][/tex]
Notice that this expression fits the form of a difference of squares, which is:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In our expression [tex]\( 25x^2 - 16y^2 \)[/tex], we can identify [tex]\( a^2 \)[/tex] and [tex]\( b^2 \)[/tex] as follows:
[tex]\[ 25x^2 = (5x)^2 \][/tex]
[tex]\[ 16y^2 = (4y)^2 \][/tex]
So, we can rewrite the expression as:
[tex]\[ (5x)^2 - (4y)^2 \][/tex]
Now, applying the difference of squares formula:
[tex]\[ (5x)^2 - (4y)^2 = (5x - 4y)(5x + 4y) \][/tex]
Hence, the factored form of the expression [tex]\( 25x^2 - 16y^2 \)[/tex] is:
[tex]\[ (5x - 4y)(5x + 4y) \][/tex]
The expression we need to factor is:
[tex]\[ 25x^2 - 16y^2 \][/tex]
Notice that this expression fits the form of a difference of squares, which is:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In our expression [tex]\( 25x^2 - 16y^2 \)[/tex], we can identify [tex]\( a^2 \)[/tex] and [tex]\( b^2 \)[/tex] as follows:
[tex]\[ 25x^2 = (5x)^2 \][/tex]
[tex]\[ 16y^2 = (4y)^2 \][/tex]
So, we can rewrite the expression as:
[tex]\[ (5x)^2 - (4y)^2 \][/tex]
Now, applying the difference of squares formula:
[tex]\[ (5x)^2 - (4y)^2 = (5x - 4y)(5x + 4y) \][/tex]
Hence, the factored form of the expression [tex]\( 25x^2 - 16y^2 \)[/tex] is:
[tex]\[ (5x - 4y)(5x + 4y) \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.