At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which statements are true given the original statement "If a number is negative, the additive inverse is positive," we will analyze the original statement and its logical equivalents.
Firstly, let's establish the variables:
- Let [tex]\( p \)[/tex]: "a number is negative"
- Let [tex]\( q \)[/tex]: "the additive inverse is positive".
The original statement given can be written in logical form as:
- Original statement: [tex]\( p \rightarrow q \)[/tex] (If [tex]\( p \)[/tex], then [tex]\( q \)[/tex])
Next, we define and evaluate the logical equivalents:
1. Inverse of the original statement: This involves negating both the hypothesis and conclusion of the original statement.
- Inverse: [tex]\( \sim p \rightarrow \sim q \)[/tex]
- Meaning: "If a number is not negative, then the additive inverse is not positive."
2. Converse of the original statement: This involves switching the hypothesis and conclusion.
- Converse: [tex]\( q \rightarrow p \)[/tex]
- Meaning: "If the additive inverse is positive, then the number is negative."
3. Contrapositive of the original statement: This involves negating and switching the hypothesis and conclusion.
- Contrapositive: [tex]\( \sim q \rightarrow \sim p \)[/tex]
- Meaning: "If the additive inverse is not positive, then the number is not negative."
Based on our definitions and the relationships between these logical statements, the true statements involve the original statement, inverse, and contrapositive since these represent valid logical transformations:
1. The original statement [tex]\( p \rightarrow q \)[/tex]:
- "a number is negative \rightarrow the additive inverse is positive"
2. The inverse of the original statement [tex]\( \sim p \rightarrow \sim q \)[/tex]:
- "not(a number is negative) \rightarrow not(the additive inverse is positive)"
3. The contrapositive of the original statement [tex]\( \sim q \rightarrow \sim p \)[/tex]:
- "not(the additive inverse is positive) \rightarrow not(a number is negative)"
The true statements are thus:
1. [tex]\( p \rightarrow q \)[/tex]: "a number is negative \rightarrow the additive inverse is positive"
2. [tex]\( \sim p \rightarrow \sim q \)[/tex]: "not(a number is negative) \rightarrow not(the additive inverse is positive)"
3. [tex]\( \sim q \rightarrow \sim p \)[/tex]: "not(the additive inverse is positive) \rightarrow not(a number is negative)"
Firstly, let's establish the variables:
- Let [tex]\( p \)[/tex]: "a number is negative"
- Let [tex]\( q \)[/tex]: "the additive inverse is positive".
The original statement given can be written in logical form as:
- Original statement: [tex]\( p \rightarrow q \)[/tex] (If [tex]\( p \)[/tex], then [tex]\( q \)[/tex])
Next, we define and evaluate the logical equivalents:
1. Inverse of the original statement: This involves negating both the hypothesis and conclusion of the original statement.
- Inverse: [tex]\( \sim p \rightarrow \sim q \)[/tex]
- Meaning: "If a number is not negative, then the additive inverse is not positive."
2. Converse of the original statement: This involves switching the hypothesis and conclusion.
- Converse: [tex]\( q \rightarrow p \)[/tex]
- Meaning: "If the additive inverse is positive, then the number is negative."
3. Contrapositive of the original statement: This involves negating and switching the hypothesis and conclusion.
- Contrapositive: [tex]\( \sim q \rightarrow \sim p \)[/tex]
- Meaning: "If the additive inverse is not positive, then the number is not negative."
Based on our definitions and the relationships between these logical statements, the true statements involve the original statement, inverse, and contrapositive since these represent valid logical transformations:
1. The original statement [tex]\( p \rightarrow q \)[/tex]:
- "a number is negative \rightarrow the additive inverse is positive"
2. The inverse of the original statement [tex]\( \sim p \rightarrow \sim q \)[/tex]:
- "not(a number is negative) \rightarrow not(the additive inverse is positive)"
3. The contrapositive of the original statement [tex]\( \sim q \rightarrow \sim p \)[/tex]:
- "not(the additive inverse is positive) \rightarrow not(a number is negative)"
The true statements are thus:
1. [tex]\( p \rightarrow q \)[/tex]: "a number is negative \rightarrow the additive inverse is positive"
2. [tex]\( \sim p \rightarrow \sim q \)[/tex]: "not(a number is negative) \rightarrow not(the additive inverse is positive)"
3. [tex]\( \sim q \rightarrow \sim p \)[/tex]: "not(the additive inverse is positive) \rightarrow not(a number is negative)"
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.