Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Factor the following:

[tex]\(81y^2 - 4\)[/tex]

Provide your answer below:

Sagot :

To factor the expression [tex]\( 81 y^2 - 4 \)[/tex], follow these steps:

1. Recognize the Structure:

The given expression [tex]\( 81 y^2 - 4 \)[/tex] is a difference of squares. The difference of squares formula states that:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]

2. Identify [tex]\(a^2\)[/tex] and [tex]\(b^2\)[/tex]:

In [tex]\( 81 y^2 - 4 \)[/tex], we can see that:
[tex]\[ a^2 = 81 y^2 \quad \text{and} \quad b^2 = 4 \][/tex]

3. Find [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:

Take the square root of each term:
[tex]\[ a = \sqrt{81 y^2} = 9y \][/tex]
and
[tex]\[ b = \sqrt{4} = 2 \][/tex]

4. Apply the Difference of Squares Formula:

Substitute [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the difference of squares formula:
[tex]\[ 81 y^2 - 4 = (9y)^2 - 2^2 = (9y - 2)(9y + 2) \][/tex]

Therefore, the factored form of the expression [tex]\( 81 y^2 - 4 \)[/tex] is:
[tex]\[ (9y - 2)(9y + 2) \][/tex]