Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the ball's height above the ground when its horizontal distance from the robot is 0 inches, we need to develop a parabolic model that best fits the given data points.
Here are the steps we followed:
1. Plot the Given Data Points:
We have the following data points for horizontal distance ([tex]\(x\)[/tex]) and height ([tex]\(y\)[/tex]):
- (8, 42)
- (10, 32)
- (12, 18)
- (14, 0)
2. Assume a Parabolic Equation:
Since the trajectory of the ball is likely a parabola, we assume a quadratic relationship of the form:
[tex]\[ y = ax^2 + bx + c \][/tex]
3. Determine the Coefficients:
Using the given data points, we fit a second-degree polynomial to the data. The coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] obtained from the fit are:
[tex]\[ a = -0.5 \][/tex]
[tex]\[ b = 4 \][/tex]
[tex]\[ c = 42 \][/tex]
4. Calculate the Height at Horizontal Distance 0:
We now substitute [tex]\(x = 0\)[/tex] into our quadratic equation:
[tex]\[ y = -0.5(0)^2 + 4(0) + 42 \][/tex]
[tex]\[ y = 42 \][/tex]
Therefore, the ball's height above the ground when its horizontal distance from the robot is 0 inches is [tex]\(42\)[/tex] inches.
The coefficients of the fitted polynomial confirm that our calculations are correct, and the height at [tex]\(x = 0\)[/tex] is indeed [tex]\(42\)[/tex] inches, very close to [tex]\(42\)[/tex]. The very slight difference of [tex]\(41.9999999999999\)[/tex] is due to numerical approximations. Thus, you can safely conclude that the ball's height is approximately [tex]\(42\)[/tex] inches, considering reasonable numerical tolerance.
Here are the steps we followed:
1. Plot the Given Data Points:
We have the following data points for horizontal distance ([tex]\(x\)[/tex]) and height ([tex]\(y\)[/tex]):
- (8, 42)
- (10, 32)
- (12, 18)
- (14, 0)
2. Assume a Parabolic Equation:
Since the trajectory of the ball is likely a parabola, we assume a quadratic relationship of the form:
[tex]\[ y = ax^2 + bx + c \][/tex]
3. Determine the Coefficients:
Using the given data points, we fit a second-degree polynomial to the data. The coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] obtained from the fit are:
[tex]\[ a = -0.5 \][/tex]
[tex]\[ b = 4 \][/tex]
[tex]\[ c = 42 \][/tex]
4. Calculate the Height at Horizontal Distance 0:
We now substitute [tex]\(x = 0\)[/tex] into our quadratic equation:
[tex]\[ y = -0.5(0)^2 + 4(0) + 42 \][/tex]
[tex]\[ y = 42 \][/tex]
Therefore, the ball's height above the ground when its horizontal distance from the robot is 0 inches is [tex]\(42\)[/tex] inches.
The coefficients of the fitted polynomial confirm that our calculations are correct, and the height at [tex]\(x = 0\)[/tex] is indeed [tex]\(42\)[/tex] inches, very close to [tex]\(42\)[/tex]. The very slight difference of [tex]\(41.9999999999999\)[/tex] is due to numerical approximations. Thus, you can safely conclude that the ball's height is approximately [tex]\(42\)[/tex] inches, considering reasonable numerical tolerance.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.