Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To factor the polynomial [tex]\(121y^2 - 144\)[/tex], we can follow these steps:
1. Identify the form of the polynomial:
The given polynomial is a quadratic expression of the form [tex]\(ax^2 + bx + c\)[/tex]. Specifically, in this case, it looks like a difference of squares, which is a special form.
2. Recognize it as a difference of squares:
The difference of squares formula is [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex]. We need to express [tex]\(121y^2 - 144\)[/tex] in this form.
3. Rewrite each term as a square:
- [tex]\(121y^2\)[/tex] can be written as [tex]\((11y)^2\)[/tex], because [tex]\(11y \cdot 11y = 121y^2\)[/tex].
- [tex]\(144\)[/tex] can be written as [tex]\(12^2\)[/tex], because [tex]\(12 \cdot 12 = 144\)[/tex].
4. Apply the difference of squares formula:
Now we can express [tex]\(121y^2 - 144\)[/tex] as [tex]\((11y)^2 - 12^2\)[/tex].
Using the formula [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex], we set [tex]\(a = 11y\)[/tex] and [tex]\(b = 12\)[/tex].
Therefore, [tex]\((11y)^2 - 12^2 = (11y - 12)(11y + 12)\)[/tex].
5. Write the factored form:
The factored form of [tex]\(121y^2 - 144\)[/tex] is:
[tex]\[ (11y - 12)(11y + 12) \][/tex]
So, the factored form of the polynomial [tex]\(121y^2 - 144\)[/tex] is [tex]\((11y - 12)(11y + 12)\)[/tex].
1. Identify the form of the polynomial:
The given polynomial is a quadratic expression of the form [tex]\(ax^2 + bx + c\)[/tex]. Specifically, in this case, it looks like a difference of squares, which is a special form.
2. Recognize it as a difference of squares:
The difference of squares formula is [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex]. We need to express [tex]\(121y^2 - 144\)[/tex] in this form.
3. Rewrite each term as a square:
- [tex]\(121y^2\)[/tex] can be written as [tex]\((11y)^2\)[/tex], because [tex]\(11y \cdot 11y = 121y^2\)[/tex].
- [tex]\(144\)[/tex] can be written as [tex]\(12^2\)[/tex], because [tex]\(12 \cdot 12 = 144\)[/tex].
4. Apply the difference of squares formula:
Now we can express [tex]\(121y^2 - 144\)[/tex] as [tex]\((11y)^2 - 12^2\)[/tex].
Using the formula [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex], we set [tex]\(a = 11y\)[/tex] and [tex]\(b = 12\)[/tex].
Therefore, [tex]\((11y)^2 - 12^2 = (11y - 12)(11y + 12)\)[/tex].
5. Write the factored form:
The factored form of [tex]\(121y^2 - 144\)[/tex] is:
[tex]\[ (11y - 12)(11y + 12) \][/tex]
So, the factored form of the polynomial [tex]\(121y^2 - 144\)[/tex] is [tex]\((11y - 12)(11y + 12)\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.