Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To factor the polynomial [tex]\(121y^2 - 144\)[/tex], we can follow these steps:
1. Identify the form of the polynomial:
The given polynomial is a quadratic expression of the form [tex]\(ax^2 + bx + c\)[/tex]. Specifically, in this case, it looks like a difference of squares, which is a special form.
2. Recognize it as a difference of squares:
The difference of squares formula is [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex]. We need to express [tex]\(121y^2 - 144\)[/tex] in this form.
3. Rewrite each term as a square:
- [tex]\(121y^2\)[/tex] can be written as [tex]\((11y)^2\)[/tex], because [tex]\(11y \cdot 11y = 121y^2\)[/tex].
- [tex]\(144\)[/tex] can be written as [tex]\(12^2\)[/tex], because [tex]\(12 \cdot 12 = 144\)[/tex].
4. Apply the difference of squares formula:
Now we can express [tex]\(121y^2 - 144\)[/tex] as [tex]\((11y)^2 - 12^2\)[/tex].
Using the formula [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex], we set [tex]\(a = 11y\)[/tex] and [tex]\(b = 12\)[/tex].
Therefore, [tex]\((11y)^2 - 12^2 = (11y - 12)(11y + 12)\)[/tex].
5. Write the factored form:
The factored form of [tex]\(121y^2 - 144\)[/tex] is:
[tex]\[ (11y - 12)(11y + 12) \][/tex]
So, the factored form of the polynomial [tex]\(121y^2 - 144\)[/tex] is [tex]\((11y - 12)(11y + 12)\)[/tex].
1. Identify the form of the polynomial:
The given polynomial is a quadratic expression of the form [tex]\(ax^2 + bx + c\)[/tex]. Specifically, in this case, it looks like a difference of squares, which is a special form.
2. Recognize it as a difference of squares:
The difference of squares formula is [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex]. We need to express [tex]\(121y^2 - 144\)[/tex] in this form.
3. Rewrite each term as a square:
- [tex]\(121y^2\)[/tex] can be written as [tex]\((11y)^2\)[/tex], because [tex]\(11y \cdot 11y = 121y^2\)[/tex].
- [tex]\(144\)[/tex] can be written as [tex]\(12^2\)[/tex], because [tex]\(12 \cdot 12 = 144\)[/tex].
4. Apply the difference of squares formula:
Now we can express [tex]\(121y^2 - 144\)[/tex] as [tex]\((11y)^2 - 12^2\)[/tex].
Using the formula [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex], we set [tex]\(a = 11y\)[/tex] and [tex]\(b = 12\)[/tex].
Therefore, [tex]\((11y)^2 - 12^2 = (11y - 12)(11y + 12)\)[/tex].
5. Write the factored form:
The factored form of [tex]\(121y^2 - 144\)[/tex] is:
[tex]\[ (11y - 12)(11y + 12) \][/tex]
So, the factored form of the polynomial [tex]\(121y^2 - 144\)[/tex] is [tex]\((11y - 12)(11y + 12)\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.