Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To factor the polynomial [tex]\( 98 x^3 - 28 x^2 + 2 x \)[/tex], we follow these steps:
1. Identify the Common Factor:
First, we notice that each term in the polynomial [tex]\( 98 x^3 - 28 x^2 + 2 x \)[/tex] has a common factor. We can factor out the greatest common factor (GCF) of the coefficients, which in this case is 2. Additionally, each term contains the variable [tex]\( x \)[/tex]. Thus, we can factor out [tex]\( 2x \)[/tex].
Let's factor out [tex]\( 2x \)[/tex]:
[tex]\[ 98 x^3 - 28 x^2 + 2 x = 2x (49 x^2 - 14 x + 1) \][/tex]
2. Factor the Remaining Polynomial:
Next, we focus on factoring the quadratic term within the parentheses: [tex]\( 49 x^2 - 14 x + 1 \)[/tex]. To factor this, we look for two binomials [tex]\((ax + b)(cx + d)\)[/tex] that multiply to give [tex]\( 49 x^2 - 14 x + 1 \)[/tex].
Notice that [tex]\( 49 x^2 - 14 x + 1 \)[/tex] can be factored as [tex]\( (7x - 1)^2 \)[/tex]. This is because:
[tex]\[ (7x - 1)(7x - 1) = 7x \cdot 7x + 7x \cdot (-1) + (-1) \cdot 7x + (-1) \cdot (-1) = 49x^2 - 7x - 7x + 1 = 49x^2 - 14x + 1 \][/tex]
Therefore, [tex]\( 49 x^2 - 14 x + 1 = (7 x - 1)^2 \)[/tex].
3. Combine the Factors:
Now that we have factored the quadratic term, we can combine it with the GCF we factored out initially:
[tex]\[ 98 x^3 - 28 x^2 + 2 x = 2x (49 x^2 - 14 x + 1) = 2x (7 x - 1)^2 \][/tex]
Thus, our final factored form of the polynomial [tex]\( 98 x^3 - 28 x^2 + 2 x \)[/tex] is:
[tex]\[ 2 x (7 x - 1)^2 \][/tex]
So, the correct answer is:
[tex]\[ 2 x (7 x - 1)^2 \][/tex]
1. Identify the Common Factor:
First, we notice that each term in the polynomial [tex]\( 98 x^3 - 28 x^2 + 2 x \)[/tex] has a common factor. We can factor out the greatest common factor (GCF) of the coefficients, which in this case is 2. Additionally, each term contains the variable [tex]\( x \)[/tex]. Thus, we can factor out [tex]\( 2x \)[/tex].
Let's factor out [tex]\( 2x \)[/tex]:
[tex]\[ 98 x^3 - 28 x^2 + 2 x = 2x (49 x^2 - 14 x + 1) \][/tex]
2. Factor the Remaining Polynomial:
Next, we focus on factoring the quadratic term within the parentheses: [tex]\( 49 x^2 - 14 x + 1 \)[/tex]. To factor this, we look for two binomials [tex]\((ax + b)(cx + d)\)[/tex] that multiply to give [tex]\( 49 x^2 - 14 x + 1 \)[/tex].
Notice that [tex]\( 49 x^2 - 14 x + 1 \)[/tex] can be factored as [tex]\( (7x - 1)^2 \)[/tex]. This is because:
[tex]\[ (7x - 1)(7x - 1) = 7x \cdot 7x + 7x \cdot (-1) + (-1) \cdot 7x + (-1) \cdot (-1) = 49x^2 - 7x - 7x + 1 = 49x^2 - 14x + 1 \][/tex]
Therefore, [tex]\( 49 x^2 - 14 x + 1 = (7 x - 1)^2 \)[/tex].
3. Combine the Factors:
Now that we have factored the quadratic term, we can combine it with the GCF we factored out initially:
[tex]\[ 98 x^3 - 28 x^2 + 2 x = 2x (49 x^2 - 14 x + 1) = 2x (7 x - 1)^2 \][/tex]
Thus, our final factored form of the polynomial [tex]\( 98 x^3 - 28 x^2 + 2 x \)[/tex] is:
[tex]\[ 2 x (7 x - 1)^2 \][/tex]
So, the correct answer is:
[tex]\[ 2 x (7 x - 1)^2 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.