At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To factor the polynomial [tex]\( 98 x^3 - 28 x^2 + 2 x \)[/tex], we follow these steps:
1. Identify the Common Factor:
First, we notice that each term in the polynomial [tex]\( 98 x^3 - 28 x^2 + 2 x \)[/tex] has a common factor. We can factor out the greatest common factor (GCF) of the coefficients, which in this case is 2. Additionally, each term contains the variable [tex]\( x \)[/tex]. Thus, we can factor out [tex]\( 2x \)[/tex].
Let's factor out [tex]\( 2x \)[/tex]:
[tex]\[ 98 x^3 - 28 x^2 + 2 x = 2x (49 x^2 - 14 x + 1) \][/tex]
2. Factor the Remaining Polynomial:
Next, we focus on factoring the quadratic term within the parentheses: [tex]\( 49 x^2 - 14 x + 1 \)[/tex]. To factor this, we look for two binomials [tex]\((ax + b)(cx + d)\)[/tex] that multiply to give [tex]\( 49 x^2 - 14 x + 1 \)[/tex].
Notice that [tex]\( 49 x^2 - 14 x + 1 \)[/tex] can be factored as [tex]\( (7x - 1)^2 \)[/tex]. This is because:
[tex]\[ (7x - 1)(7x - 1) = 7x \cdot 7x + 7x \cdot (-1) + (-1) \cdot 7x + (-1) \cdot (-1) = 49x^2 - 7x - 7x + 1 = 49x^2 - 14x + 1 \][/tex]
Therefore, [tex]\( 49 x^2 - 14 x + 1 = (7 x - 1)^2 \)[/tex].
3. Combine the Factors:
Now that we have factored the quadratic term, we can combine it with the GCF we factored out initially:
[tex]\[ 98 x^3 - 28 x^2 + 2 x = 2x (49 x^2 - 14 x + 1) = 2x (7 x - 1)^2 \][/tex]
Thus, our final factored form of the polynomial [tex]\( 98 x^3 - 28 x^2 + 2 x \)[/tex] is:
[tex]\[ 2 x (7 x - 1)^2 \][/tex]
So, the correct answer is:
[tex]\[ 2 x (7 x - 1)^2 \][/tex]
1. Identify the Common Factor:
First, we notice that each term in the polynomial [tex]\( 98 x^3 - 28 x^2 + 2 x \)[/tex] has a common factor. We can factor out the greatest common factor (GCF) of the coefficients, which in this case is 2. Additionally, each term contains the variable [tex]\( x \)[/tex]. Thus, we can factor out [tex]\( 2x \)[/tex].
Let's factor out [tex]\( 2x \)[/tex]:
[tex]\[ 98 x^3 - 28 x^2 + 2 x = 2x (49 x^2 - 14 x + 1) \][/tex]
2. Factor the Remaining Polynomial:
Next, we focus on factoring the quadratic term within the parentheses: [tex]\( 49 x^2 - 14 x + 1 \)[/tex]. To factor this, we look for two binomials [tex]\((ax + b)(cx + d)\)[/tex] that multiply to give [tex]\( 49 x^2 - 14 x + 1 \)[/tex].
Notice that [tex]\( 49 x^2 - 14 x + 1 \)[/tex] can be factored as [tex]\( (7x - 1)^2 \)[/tex]. This is because:
[tex]\[ (7x - 1)(7x - 1) = 7x \cdot 7x + 7x \cdot (-1) + (-1) \cdot 7x + (-1) \cdot (-1) = 49x^2 - 7x - 7x + 1 = 49x^2 - 14x + 1 \][/tex]
Therefore, [tex]\( 49 x^2 - 14 x + 1 = (7 x - 1)^2 \)[/tex].
3. Combine the Factors:
Now that we have factored the quadratic term, we can combine it with the GCF we factored out initially:
[tex]\[ 98 x^3 - 28 x^2 + 2 x = 2x (49 x^2 - 14 x + 1) = 2x (7 x - 1)^2 \][/tex]
Thus, our final factored form of the polynomial [tex]\( 98 x^3 - 28 x^2 + 2 x \)[/tex] is:
[tex]\[ 2 x (7 x - 1)^2 \][/tex]
So, the correct answer is:
[tex]\[ 2 x (7 x - 1)^2 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.