Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's factor the polynomial [tex]\(4x^2 - 16x + 16\)[/tex] step-by-step:
1. Identify the given polynomial:
[tex]$4x^2 - 16x + 16$[/tex]
2. Rewrite the polynomial in a standard form to look for a pattern:
Firstly, observe that this is a quadratic polynomial. We will check if it can be factored as a perfect square trinomial. A perfect square trinomial has the form [tex]\((ax - b)^2 = a^2x^2 - 2abx + b^2\)[/tex].
3. Comparison with the standard form:
[tex]$a^2x^2 - 2abx + b^2 \quad \text{with} \quad 4x^2 - 16x + 16$[/tex]
From this comparison:
- [tex]\(a^2x^2 = 4x^2 \implies a^2 = 4 \implies a = 2\)[/tex]
- [tex]\(b^2 = 16 \implies b = 4\)[/tex]
- Check the middle term:
The middle term, as given, is [tex]\(-16x\)[/tex]. We need to verify:
[tex]$-2abx = -2 \times 2 \times 4 \times x = -16x$[/tex]
This matches the given polynomial.
4. Rewrite the polynomial as a perfect square:
Based on the above observations, we can rewrite the polynomial [tex]\(4x^2 - 16x + 16\)[/tex] as:
[tex]$(2x - 4)^2$[/tex]
5. Verification:
To ensure our factorization is correct, let's expand [tex]\((2x - 4)^2\)[/tex]:
[tex]$ (2x - 4)(2x - 4) = 4x^2 - 8x - 8x + 16 = 4x^2 - 16x + 16 $[/tex]
This confirms that our factorization is accurate.
Thus, the completely factored form of the polynomial [tex]\(4x^2 - 16x + 16\)[/tex] is:
[tex]$ (2x - 4)^2 $[/tex]
1. Identify the given polynomial:
[tex]$4x^2 - 16x + 16$[/tex]
2. Rewrite the polynomial in a standard form to look for a pattern:
Firstly, observe that this is a quadratic polynomial. We will check if it can be factored as a perfect square trinomial. A perfect square trinomial has the form [tex]\((ax - b)^2 = a^2x^2 - 2abx + b^2\)[/tex].
3. Comparison with the standard form:
[tex]$a^2x^2 - 2abx + b^2 \quad \text{with} \quad 4x^2 - 16x + 16$[/tex]
From this comparison:
- [tex]\(a^2x^2 = 4x^2 \implies a^2 = 4 \implies a = 2\)[/tex]
- [tex]\(b^2 = 16 \implies b = 4\)[/tex]
- Check the middle term:
The middle term, as given, is [tex]\(-16x\)[/tex]. We need to verify:
[tex]$-2abx = -2 \times 2 \times 4 \times x = -16x$[/tex]
This matches the given polynomial.
4. Rewrite the polynomial as a perfect square:
Based on the above observations, we can rewrite the polynomial [tex]\(4x^2 - 16x + 16\)[/tex] as:
[tex]$(2x - 4)^2$[/tex]
5. Verification:
To ensure our factorization is correct, let's expand [tex]\((2x - 4)^2\)[/tex]:
[tex]$ (2x - 4)(2x - 4) = 4x^2 - 8x - 8x + 16 = 4x^2 - 16x + 16 $[/tex]
This confirms that our factorization is accurate.
Thus, the completely factored form of the polynomial [tex]\(4x^2 - 16x + 16\)[/tex] is:
[tex]$ (2x - 4)^2 $[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.