Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's factor the polynomial [tex]\(4x^2 - 16x + 16\)[/tex] step-by-step:
1. Identify the given polynomial:
[tex]$4x^2 - 16x + 16$[/tex]
2. Rewrite the polynomial in a standard form to look for a pattern:
Firstly, observe that this is a quadratic polynomial. We will check if it can be factored as a perfect square trinomial. A perfect square trinomial has the form [tex]\((ax - b)^2 = a^2x^2 - 2abx + b^2\)[/tex].
3. Comparison with the standard form:
[tex]$a^2x^2 - 2abx + b^2 \quad \text{with} \quad 4x^2 - 16x + 16$[/tex]
From this comparison:
- [tex]\(a^2x^2 = 4x^2 \implies a^2 = 4 \implies a = 2\)[/tex]
- [tex]\(b^2 = 16 \implies b = 4\)[/tex]
- Check the middle term:
The middle term, as given, is [tex]\(-16x\)[/tex]. We need to verify:
[tex]$-2abx = -2 \times 2 \times 4 \times x = -16x$[/tex]
This matches the given polynomial.
4. Rewrite the polynomial as a perfect square:
Based on the above observations, we can rewrite the polynomial [tex]\(4x^2 - 16x + 16\)[/tex] as:
[tex]$(2x - 4)^2$[/tex]
5. Verification:
To ensure our factorization is correct, let's expand [tex]\((2x - 4)^2\)[/tex]:
[tex]$ (2x - 4)(2x - 4) = 4x^2 - 8x - 8x + 16 = 4x^2 - 16x + 16 $[/tex]
This confirms that our factorization is accurate.
Thus, the completely factored form of the polynomial [tex]\(4x^2 - 16x + 16\)[/tex] is:
[tex]$ (2x - 4)^2 $[/tex]
1. Identify the given polynomial:
[tex]$4x^2 - 16x + 16$[/tex]
2. Rewrite the polynomial in a standard form to look for a pattern:
Firstly, observe that this is a quadratic polynomial. We will check if it can be factored as a perfect square trinomial. A perfect square trinomial has the form [tex]\((ax - b)^2 = a^2x^2 - 2abx + b^2\)[/tex].
3. Comparison with the standard form:
[tex]$a^2x^2 - 2abx + b^2 \quad \text{with} \quad 4x^2 - 16x + 16$[/tex]
From this comparison:
- [tex]\(a^2x^2 = 4x^2 \implies a^2 = 4 \implies a = 2\)[/tex]
- [tex]\(b^2 = 16 \implies b = 4\)[/tex]
- Check the middle term:
The middle term, as given, is [tex]\(-16x\)[/tex]. We need to verify:
[tex]$-2abx = -2 \times 2 \times 4 \times x = -16x$[/tex]
This matches the given polynomial.
4. Rewrite the polynomial as a perfect square:
Based on the above observations, we can rewrite the polynomial [tex]\(4x^2 - 16x + 16\)[/tex] as:
[tex]$(2x - 4)^2$[/tex]
5. Verification:
To ensure our factorization is correct, let's expand [tex]\((2x - 4)^2\)[/tex]:
[tex]$ (2x - 4)(2x - 4) = 4x^2 - 8x - 8x + 16 = 4x^2 - 16x + 16 $[/tex]
This confirms that our factorization is accurate.
Thus, the completely factored form of the polynomial [tex]\(4x^2 - 16x + 16\)[/tex] is:
[tex]$ (2x - 4)^2 $[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.