Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the factored form of the polynomial [tex]\( z^2 - 10z + 25 \)[/tex], we will follow a series of logical steps.
1. Identify the polynomial: [tex]\( z^2 - 10z + 25 \)[/tex].
2. Recognize that this polynomial is a quadratic expression in the form [tex]\( ax^2 + bx + c \)[/tex], where:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = -10\)[/tex]
- [tex]\(c = 25\)[/tex]
3. Factor the polynomial by finding two binomials that multiply together to give the original polynomial. These binomials should take the form [tex]\((z - p)(z - q)\)[/tex], where [tex]\(p\)[/tex] and [tex]\(q\)[/tex] are numbers that satisfy the following conditions:
- [tex]\( p \cdot q = c = 25 \)[/tex]
- [tex]\( p + q = b = -10 \)[/tex]
4. Find the values of p and q:
- We need two numbers that multiply to 25 and add up to -10.
- These numbers are: -5 and -5 because:
- [tex]\((-5) \cdot (-5) = 25\)[/tex]
- [tex]\((-5) + (-5) = -10\)[/tex]
5. Write the factored form:
- Hence, the polynomial can be factored as [tex]\( (z - 5)(z - 5) \)[/tex].
- This can also be written as [tex]\( (z - 5)^2 \)[/tex].
So, the factored form of [tex]\( z^2 - 10z + 25 \)[/tex] is:
[tex]\[ (z - 5)(z - 5) \][/tex]
or equivalently:
[tex]\[ (z - 5)^2 \][/tex]
1. Identify the polynomial: [tex]\( z^2 - 10z + 25 \)[/tex].
2. Recognize that this polynomial is a quadratic expression in the form [tex]\( ax^2 + bx + c \)[/tex], where:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = -10\)[/tex]
- [tex]\(c = 25\)[/tex]
3. Factor the polynomial by finding two binomials that multiply together to give the original polynomial. These binomials should take the form [tex]\((z - p)(z - q)\)[/tex], where [tex]\(p\)[/tex] and [tex]\(q\)[/tex] are numbers that satisfy the following conditions:
- [tex]\( p \cdot q = c = 25 \)[/tex]
- [tex]\( p + q = b = -10 \)[/tex]
4. Find the values of p and q:
- We need two numbers that multiply to 25 and add up to -10.
- These numbers are: -5 and -5 because:
- [tex]\((-5) \cdot (-5) = 25\)[/tex]
- [tex]\((-5) + (-5) = -10\)[/tex]
5. Write the factored form:
- Hence, the polynomial can be factored as [tex]\( (z - 5)(z - 5) \)[/tex].
- This can also be written as [tex]\( (z - 5)^2 \)[/tex].
So, the factored form of [tex]\( z^2 - 10z + 25 \)[/tex] is:
[tex]\[ (z - 5)(z - 5) \][/tex]
or equivalently:
[tex]\[ (z - 5)^2 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.