Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Factor the following expression:
[tex]\[ 2 x^{\frac{1}{4}} + 20 x^{\frac{1}{2}} \][/tex]

Provide your answer below:


Sagot :

To factor the expression [tex]\( 2 x^{\frac{1}{4}} + 20 x^{\frac{1}{2}} \)[/tex], follow these steps:

1. Identify the common factor in the terms of the expression.

The expression is:
[tex]\[ 2 x^{\frac{1}{4}} + 20 x^{\frac{1}{2}} \][/tex]

2. Factor out the greatest common factor from the expression.

Both terms share a common factor of [tex]\( 2 \)[/tex]. Let’s factor the [tex]\( 2 \)[/tex] out:
[tex]\[ 2 ( x^{\frac{1}{4}} + 10 x^{\frac{1}{2}} ) \][/tex]

3. Simplify the remaining expression inside the parentheses.

Notice that within the parentheses, each term involves [tex]\( x \)[/tex] raised to a power. To factor further if possible, we should express the terms using the same base power of [tex]\( x \)[/tex]:
[tex]\[ 2 \left( x^{\frac{1}{4}} + 10 x^{\frac{2}{4}} \right) \][/tex]

Here, [tex]\( x^{\frac{1}{2}} \)[/tex] is rewritten as [tex]\( x^{\frac{2}{4}} \)[/tex].

4. Compare and identify common factors inside the parentheses (Optional if needed for complex factors).

Given the simplified terms are now [tex]\( x^{\frac{1}{4}} \)[/tex] and [tex]\( x^{\frac{2}{4}} \)[/tex] (already simplified):
[tex]\[ 2 \left( x^{0.25} + 10 x^{0.5} \right) \][/tex]

Since there are no further common factors within the parentheses, the expression remains:
[tex]\[ 2 ( x^{0.25} + 10 x^{0.5} ) \][/tex]

Thus, the final factored form of the given expression [tex]\( 2 x^{\frac{1}{4}} + 20 x^{\frac{1}{2}} \)[/tex] is:
[tex]\[ 2 ( x^{\frac{1}{4}} + 10 x^{\frac{1}{2}} ) \][/tex]

Or equivalently:
[tex]\[ 2 ( x^{0.25} + 10 x^{0.5} ) \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.