At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's break down and solve this problem step-by-step.
Let's denote the smaller number by [tex]\( x \)[/tex] and the larger number by [tex]\( y \)[/tex].
### Step 1: Establish the equations from the given conditions
Condition 1: The larger number is 2 more than 3 times the smaller number.
This can be expressed as:
[tex]\[ y = 3x + 2 \][/tex]
Condition 2: If 3 is added to the smaller number and 1 to the larger number, they will be in the ratio 3:7.
This can be expressed as:
[tex]\[ \frac{x + 3}{y + 1} = \frac{3}{7} \][/tex]
### Step 2: Simplify the second equation
Cross-multiply to get rid of the fraction:
[tex]\[ 7(x + 3) = 3(y + 1) \][/tex]
Distribute and simplify:
[tex]\[ 7x + 21 = 3y + 3 \][/tex]
[tex]\[ 7x + 21 - 3 = 3y \][/tex]
[tex]\[ 7x + 18 = 3y \][/tex]
### Step 3: Substitute the first equation into the simplified second equation
From the first equation, we know [tex]\( y = 3x + 2 \)[/tex]. Substitute [tex]\( y \)[/tex] in the simplified second equation:
[tex]\[ 7x + 18 = 3(3x + 2) \][/tex]
[tex]\[ 7x + 18 = 9x + 6 \][/tex]
### Step 4: Solve for [tex]\( x \)[/tex]
Rearrange the equation to isolate [tex]\( x \)[/tex]:
[tex]\[ 7x + 18 - 9x = 6 \][/tex]
[tex]\[ -2x + 18 = 6 \][/tex]
[tex]\[ -2x = 6 - 18 \][/tex]
[tex]\[ -2x = -12 \][/tex]
[tex]\[ x = 6 \][/tex]
So, the smaller number [tex]\( x \)[/tex] is 6.
### Step 5: Find [tex]\( y \)[/tex] using the value of [tex]\( x \)[/tex]
Substitute [tex]\( x = 6 \)[/tex] into the first equation [tex]\( y = 3x + 2 \)[/tex]:
[tex]\[ y = 3(6) + 2 \][/tex]
[tex]\[ y = 18 + 2 \][/tex]
[tex]\[ y = 20 \][/tex]
So, the larger number [tex]\( y \)[/tex] is 20.
### Conclusion
The two numbers are:
- The smaller number is 6.
- The larger number is 20.
Let's denote the smaller number by [tex]\( x \)[/tex] and the larger number by [tex]\( y \)[/tex].
### Step 1: Establish the equations from the given conditions
Condition 1: The larger number is 2 more than 3 times the smaller number.
This can be expressed as:
[tex]\[ y = 3x + 2 \][/tex]
Condition 2: If 3 is added to the smaller number and 1 to the larger number, they will be in the ratio 3:7.
This can be expressed as:
[tex]\[ \frac{x + 3}{y + 1} = \frac{3}{7} \][/tex]
### Step 2: Simplify the second equation
Cross-multiply to get rid of the fraction:
[tex]\[ 7(x + 3) = 3(y + 1) \][/tex]
Distribute and simplify:
[tex]\[ 7x + 21 = 3y + 3 \][/tex]
[tex]\[ 7x + 21 - 3 = 3y \][/tex]
[tex]\[ 7x + 18 = 3y \][/tex]
### Step 3: Substitute the first equation into the simplified second equation
From the first equation, we know [tex]\( y = 3x + 2 \)[/tex]. Substitute [tex]\( y \)[/tex] in the simplified second equation:
[tex]\[ 7x + 18 = 3(3x + 2) \][/tex]
[tex]\[ 7x + 18 = 9x + 6 \][/tex]
### Step 4: Solve for [tex]\( x \)[/tex]
Rearrange the equation to isolate [tex]\( x \)[/tex]:
[tex]\[ 7x + 18 - 9x = 6 \][/tex]
[tex]\[ -2x + 18 = 6 \][/tex]
[tex]\[ -2x = 6 - 18 \][/tex]
[tex]\[ -2x = -12 \][/tex]
[tex]\[ x = 6 \][/tex]
So, the smaller number [tex]\( x \)[/tex] is 6.
### Step 5: Find [tex]\( y \)[/tex] using the value of [tex]\( x \)[/tex]
Substitute [tex]\( x = 6 \)[/tex] into the first equation [tex]\( y = 3x + 2 \)[/tex]:
[tex]\[ y = 3(6) + 2 \][/tex]
[tex]\[ y = 18 + 2 \][/tex]
[tex]\[ y = 20 \][/tex]
So, the larger number [tex]\( y \)[/tex] is 20.
### Conclusion
The two numbers are:
- The smaller number is 6.
- The larger number is 20.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.