Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's break down and solve this problem step-by-step.
Let's denote the smaller number by [tex]\( x \)[/tex] and the larger number by [tex]\( y \)[/tex].
### Step 1: Establish the equations from the given conditions
Condition 1: The larger number is 2 more than 3 times the smaller number.
This can be expressed as:
[tex]\[ y = 3x + 2 \][/tex]
Condition 2: If 3 is added to the smaller number and 1 to the larger number, they will be in the ratio 3:7.
This can be expressed as:
[tex]\[ \frac{x + 3}{y + 1} = \frac{3}{7} \][/tex]
### Step 2: Simplify the second equation
Cross-multiply to get rid of the fraction:
[tex]\[ 7(x + 3) = 3(y + 1) \][/tex]
Distribute and simplify:
[tex]\[ 7x + 21 = 3y + 3 \][/tex]
[tex]\[ 7x + 21 - 3 = 3y \][/tex]
[tex]\[ 7x + 18 = 3y \][/tex]
### Step 3: Substitute the first equation into the simplified second equation
From the first equation, we know [tex]\( y = 3x + 2 \)[/tex]. Substitute [tex]\( y \)[/tex] in the simplified second equation:
[tex]\[ 7x + 18 = 3(3x + 2) \][/tex]
[tex]\[ 7x + 18 = 9x + 6 \][/tex]
### Step 4: Solve for [tex]\( x \)[/tex]
Rearrange the equation to isolate [tex]\( x \)[/tex]:
[tex]\[ 7x + 18 - 9x = 6 \][/tex]
[tex]\[ -2x + 18 = 6 \][/tex]
[tex]\[ -2x = 6 - 18 \][/tex]
[tex]\[ -2x = -12 \][/tex]
[tex]\[ x = 6 \][/tex]
So, the smaller number [tex]\( x \)[/tex] is 6.
### Step 5: Find [tex]\( y \)[/tex] using the value of [tex]\( x \)[/tex]
Substitute [tex]\( x = 6 \)[/tex] into the first equation [tex]\( y = 3x + 2 \)[/tex]:
[tex]\[ y = 3(6) + 2 \][/tex]
[tex]\[ y = 18 + 2 \][/tex]
[tex]\[ y = 20 \][/tex]
So, the larger number [tex]\( y \)[/tex] is 20.
### Conclusion
The two numbers are:
- The smaller number is 6.
- The larger number is 20.
Let's denote the smaller number by [tex]\( x \)[/tex] and the larger number by [tex]\( y \)[/tex].
### Step 1: Establish the equations from the given conditions
Condition 1: The larger number is 2 more than 3 times the smaller number.
This can be expressed as:
[tex]\[ y = 3x + 2 \][/tex]
Condition 2: If 3 is added to the smaller number and 1 to the larger number, they will be in the ratio 3:7.
This can be expressed as:
[tex]\[ \frac{x + 3}{y + 1} = \frac{3}{7} \][/tex]
### Step 2: Simplify the second equation
Cross-multiply to get rid of the fraction:
[tex]\[ 7(x + 3) = 3(y + 1) \][/tex]
Distribute and simplify:
[tex]\[ 7x + 21 = 3y + 3 \][/tex]
[tex]\[ 7x + 21 - 3 = 3y \][/tex]
[tex]\[ 7x + 18 = 3y \][/tex]
### Step 3: Substitute the first equation into the simplified second equation
From the first equation, we know [tex]\( y = 3x + 2 \)[/tex]. Substitute [tex]\( y \)[/tex] in the simplified second equation:
[tex]\[ 7x + 18 = 3(3x + 2) \][/tex]
[tex]\[ 7x + 18 = 9x + 6 \][/tex]
### Step 4: Solve for [tex]\( x \)[/tex]
Rearrange the equation to isolate [tex]\( x \)[/tex]:
[tex]\[ 7x + 18 - 9x = 6 \][/tex]
[tex]\[ -2x + 18 = 6 \][/tex]
[tex]\[ -2x = 6 - 18 \][/tex]
[tex]\[ -2x = -12 \][/tex]
[tex]\[ x = 6 \][/tex]
So, the smaller number [tex]\( x \)[/tex] is 6.
### Step 5: Find [tex]\( y \)[/tex] using the value of [tex]\( x \)[/tex]
Substitute [tex]\( x = 6 \)[/tex] into the first equation [tex]\( y = 3x + 2 \)[/tex]:
[tex]\[ y = 3(6) + 2 \][/tex]
[tex]\[ y = 18 + 2 \][/tex]
[tex]\[ y = 20 \][/tex]
So, the larger number [tex]\( y \)[/tex] is 20.
### Conclusion
The two numbers are:
- The smaller number is 6.
- The larger number is 20.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.