At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find [tex]\(\sec \theta\)[/tex] given that [tex]\(\tan \theta = \frac{m^2 - n^2}{2 m n}\)[/tex], follow these steps:
1. Understand the Given Expression:
- We are given [tex]\(\tan \theta = \frac{m^2 - n^2}{2 m n}\)[/tex].
- Remember that [tex]\(\tan \theta\)[/tex] is the ratio of the opposite side to the adjacent side in a right triangle.
2. Recall the Trigonometric Identity:
- We need to use the Pythagorean identity involving [tex]\(\sec \theta\)[/tex] and [tex]\(\tan \theta\)[/tex]:
[tex]\[ \sec^2 \theta = 1 + \tan^2 \theta \][/tex]
- This can be rearranged to find [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec \theta = \sqrt{1 + \tan^2 \theta} \][/tex]
3. Calculate [tex]\(\tan^2 \theta\)[/tex]:
- Since [tex]\(\tan \theta\)[/tex] is given by [tex]\(\frac{m^2 - n^2}{2 m n}\)[/tex], we calculate its square:
[tex]\[ \tan^2 \theta = \left( \frac{m^2 - n^2}{2 m n} \right)^2 \][/tex]
[tex]\[ \tan^2 \theta = \frac{(m^2 - n^2)^2}{(2 m n)^2} \][/tex]
[tex]\[ \tan^2 \theta = \frac{(m^2 - n^2)^2}{4 m^2 n^2} \][/tex]
4. Substitute [tex]\(\tan^2 \theta\)[/tex] into the Identity:
[tex]\[ \sec^2 \theta = 1 + \frac{(m^2 - n^2)^2}{4 m^2 n^2} \][/tex]
5. Simplify the Expression for [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec^2 \theta = \frac{4 m^2 n^2 + (m^2 - n^2)^2}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \frac{4 m^2 n^2 + m^4 - 2m^2 n^2 + n^4}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \frac{m^4 + 2m^2 n^2 + n^4}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \frac{(m^2 + n^2)^2}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \left( \frac{m^2 + n^2}{2 m n} \right)^2 \][/tex]
6. Take the Square Root:
- Finally, take the square root of both sides to find [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec \theta = \frac{m^2 + n^2}{2 m n} \][/tex]
From the numbers provided in the solution, [tex]\(\tan \theta\)[/tex] is approximately [tex]\(0.5333\)[/tex] and [tex]\(\sec \theta\)[/tex] is approximately [tex]\(1.1333\)[/tex].
1. Understand the Given Expression:
- We are given [tex]\(\tan \theta = \frac{m^2 - n^2}{2 m n}\)[/tex].
- Remember that [tex]\(\tan \theta\)[/tex] is the ratio of the opposite side to the adjacent side in a right triangle.
2. Recall the Trigonometric Identity:
- We need to use the Pythagorean identity involving [tex]\(\sec \theta\)[/tex] and [tex]\(\tan \theta\)[/tex]:
[tex]\[ \sec^2 \theta = 1 + \tan^2 \theta \][/tex]
- This can be rearranged to find [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec \theta = \sqrt{1 + \tan^2 \theta} \][/tex]
3. Calculate [tex]\(\tan^2 \theta\)[/tex]:
- Since [tex]\(\tan \theta\)[/tex] is given by [tex]\(\frac{m^2 - n^2}{2 m n}\)[/tex], we calculate its square:
[tex]\[ \tan^2 \theta = \left( \frac{m^2 - n^2}{2 m n} \right)^2 \][/tex]
[tex]\[ \tan^2 \theta = \frac{(m^2 - n^2)^2}{(2 m n)^2} \][/tex]
[tex]\[ \tan^2 \theta = \frac{(m^2 - n^2)^2}{4 m^2 n^2} \][/tex]
4. Substitute [tex]\(\tan^2 \theta\)[/tex] into the Identity:
[tex]\[ \sec^2 \theta = 1 + \frac{(m^2 - n^2)^2}{4 m^2 n^2} \][/tex]
5. Simplify the Expression for [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec^2 \theta = \frac{4 m^2 n^2 + (m^2 - n^2)^2}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \frac{4 m^2 n^2 + m^4 - 2m^2 n^2 + n^4}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \frac{m^4 + 2m^2 n^2 + n^4}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \frac{(m^2 + n^2)^2}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \left( \frac{m^2 + n^2}{2 m n} \right)^2 \][/tex]
6. Take the Square Root:
- Finally, take the square root of both sides to find [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec \theta = \frac{m^2 + n^2}{2 m n} \][/tex]
From the numbers provided in the solution, [tex]\(\tan \theta\)[/tex] is approximately [tex]\(0.5333\)[/tex] and [tex]\(\sec \theta\)[/tex] is approximately [tex]\(1.1333\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.