Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find [tex]\(\sec \theta\)[/tex] given that [tex]\(\tan \theta = \frac{m^2 - n^2}{2 m n}\)[/tex], follow these steps:
1. Understand the Given Expression:
- We are given [tex]\(\tan \theta = \frac{m^2 - n^2}{2 m n}\)[/tex].
- Remember that [tex]\(\tan \theta\)[/tex] is the ratio of the opposite side to the adjacent side in a right triangle.
2. Recall the Trigonometric Identity:
- We need to use the Pythagorean identity involving [tex]\(\sec \theta\)[/tex] and [tex]\(\tan \theta\)[/tex]:
[tex]\[ \sec^2 \theta = 1 + \tan^2 \theta \][/tex]
- This can be rearranged to find [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec \theta = \sqrt{1 + \tan^2 \theta} \][/tex]
3. Calculate [tex]\(\tan^2 \theta\)[/tex]:
- Since [tex]\(\tan \theta\)[/tex] is given by [tex]\(\frac{m^2 - n^2}{2 m n}\)[/tex], we calculate its square:
[tex]\[ \tan^2 \theta = \left( \frac{m^2 - n^2}{2 m n} \right)^2 \][/tex]
[tex]\[ \tan^2 \theta = \frac{(m^2 - n^2)^2}{(2 m n)^2} \][/tex]
[tex]\[ \tan^2 \theta = \frac{(m^2 - n^2)^2}{4 m^2 n^2} \][/tex]
4. Substitute [tex]\(\tan^2 \theta\)[/tex] into the Identity:
[tex]\[ \sec^2 \theta = 1 + \frac{(m^2 - n^2)^2}{4 m^2 n^2} \][/tex]
5. Simplify the Expression for [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec^2 \theta = \frac{4 m^2 n^2 + (m^2 - n^2)^2}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \frac{4 m^2 n^2 + m^4 - 2m^2 n^2 + n^4}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \frac{m^4 + 2m^2 n^2 + n^4}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \frac{(m^2 + n^2)^2}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \left( \frac{m^2 + n^2}{2 m n} \right)^2 \][/tex]
6. Take the Square Root:
- Finally, take the square root of both sides to find [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec \theta = \frac{m^2 + n^2}{2 m n} \][/tex]
From the numbers provided in the solution, [tex]\(\tan \theta\)[/tex] is approximately [tex]\(0.5333\)[/tex] and [tex]\(\sec \theta\)[/tex] is approximately [tex]\(1.1333\)[/tex].
1. Understand the Given Expression:
- We are given [tex]\(\tan \theta = \frac{m^2 - n^2}{2 m n}\)[/tex].
- Remember that [tex]\(\tan \theta\)[/tex] is the ratio of the opposite side to the adjacent side in a right triangle.
2. Recall the Trigonometric Identity:
- We need to use the Pythagorean identity involving [tex]\(\sec \theta\)[/tex] and [tex]\(\tan \theta\)[/tex]:
[tex]\[ \sec^2 \theta = 1 + \tan^2 \theta \][/tex]
- This can be rearranged to find [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec \theta = \sqrt{1 + \tan^2 \theta} \][/tex]
3. Calculate [tex]\(\tan^2 \theta\)[/tex]:
- Since [tex]\(\tan \theta\)[/tex] is given by [tex]\(\frac{m^2 - n^2}{2 m n}\)[/tex], we calculate its square:
[tex]\[ \tan^2 \theta = \left( \frac{m^2 - n^2}{2 m n} \right)^2 \][/tex]
[tex]\[ \tan^2 \theta = \frac{(m^2 - n^2)^2}{(2 m n)^2} \][/tex]
[tex]\[ \tan^2 \theta = \frac{(m^2 - n^2)^2}{4 m^2 n^2} \][/tex]
4. Substitute [tex]\(\tan^2 \theta\)[/tex] into the Identity:
[tex]\[ \sec^2 \theta = 1 + \frac{(m^2 - n^2)^2}{4 m^2 n^2} \][/tex]
5. Simplify the Expression for [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec^2 \theta = \frac{4 m^2 n^2 + (m^2 - n^2)^2}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \frac{4 m^2 n^2 + m^4 - 2m^2 n^2 + n^4}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \frac{m^4 + 2m^2 n^2 + n^4}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \frac{(m^2 + n^2)^2}{4 m^2 n^2} \][/tex]
[tex]\[ \sec^2 \theta = \left( \frac{m^2 + n^2}{2 m n} \right)^2 \][/tex]
6. Take the Square Root:
- Finally, take the square root of both sides to find [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec \theta = \frac{m^2 + n^2}{2 m n} \][/tex]
From the numbers provided in the solution, [tex]\(\tan \theta\)[/tex] is approximately [tex]\(0.5333\)[/tex] and [tex]\(\sec \theta\)[/tex] is approximately [tex]\(1.1333\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.