Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine how much energy is needed to raise the temperature of [tex]\(10 \, \text{g}\)[/tex] of iron and aluminum each by [tex]\(1^{\circ} \text{C}\)[/tex], we can start by using the formula for heat energy:
[tex]\[ Q = m \cdot C \cdot \Delta T \][/tex]
where:
- [tex]\( Q \)[/tex] is the heat energy (in joules, [tex]\(J\)[/tex]),
- [tex]\( m \)[/tex] is the mass (in grams, [tex]\( g \)[/tex]),
- [tex]\( C \)[/tex] is the specific heat capacity (in [tex]\( \frac{J}{g \cdot {}^{\circ}C} \)[/tex]),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in [tex]\( {}^{\circ}C \)[/tex]).
Step-by-step calculation:
1. Determine the energy needed for iron:
For iron (Fe):
- Mass ([tex]\( m \)[/tex]) = [tex]\( 10 \, g \)[/tex]
- Specific heat capacity ([tex]\( C_{Fe} \)[/tex]) = [tex]\( 0.450 \, \frac{J}{g \cdot {}^{\circ}C} \)[/tex]
- Temperature change ([tex]\( \Delta T \)[/tex]) = [tex]\( 1^{\circ}C \)[/tex]
Plug these values into the formula:
[tex]\[ Q_{Fe} = 10 \, g \cdot 0.450 \, \frac{J}{g \cdot {}^{\circ}C} \cdot 1^{\circ}C = 4.5 \, J \][/tex]
2. Determine the energy needed for aluminum:
For aluminum (Al):
- Mass ([tex]\( m \)[/tex]) = [tex]\( 10 \, g \)[/tex]
- Specific heat capacity ([tex]\( C_{Al} \)[/tex]) = [tex]\( 0.900 \, \frac{J}{g \cdot {}^{\circ}C} \)[/tex]
- Temperature change ([tex]\( \Delta T \)[/tex]) = [tex]\( 1^{\circ}C \)[/tex]
Plug these values into the formula:
[tex]\[ Q_{Al} = 10 \, g \cdot 0.900 \, \frac{J}{g \cdot {}^{\circ}C} \cdot 1^{\circ}C = 9.0 \, J \][/tex]
3. Compare the energy needed for iron and aluminum:
The energy required for aluminum is [tex]\( 9.0 \, J \)[/tex], while the energy required for iron is [tex]\( 4.5 \, J \)[/tex]. To compare these amounts, calculate the ratio of the energy required for aluminum to the energy required for iron:
[tex]\[ \text{Ratio} = \frac{Q_{Al}}{Q_{Fe}} = \frac{9.0 \, J}{4.5 \, J} = 2.0 \][/tex]
This means aluminum requires twice as much energy as iron to raise the temperature of the same mass by the same amount. Therefore, we conclude:
Iron needs half as much energy as aluminum.
Answer: Fe needs half as much energy as Al.
[tex]\[ Q = m \cdot C \cdot \Delta T \][/tex]
where:
- [tex]\( Q \)[/tex] is the heat energy (in joules, [tex]\(J\)[/tex]),
- [tex]\( m \)[/tex] is the mass (in grams, [tex]\( g \)[/tex]),
- [tex]\( C \)[/tex] is the specific heat capacity (in [tex]\( \frac{J}{g \cdot {}^{\circ}C} \)[/tex]),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in [tex]\( {}^{\circ}C \)[/tex]).
Step-by-step calculation:
1. Determine the energy needed for iron:
For iron (Fe):
- Mass ([tex]\( m \)[/tex]) = [tex]\( 10 \, g \)[/tex]
- Specific heat capacity ([tex]\( C_{Fe} \)[/tex]) = [tex]\( 0.450 \, \frac{J}{g \cdot {}^{\circ}C} \)[/tex]
- Temperature change ([tex]\( \Delta T \)[/tex]) = [tex]\( 1^{\circ}C \)[/tex]
Plug these values into the formula:
[tex]\[ Q_{Fe} = 10 \, g \cdot 0.450 \, \frac{J}{g \cdot {}^{\circ}C} \cdot 1^{\circ}C = 4.5 \, J \][/tex]
2. Determine the energy needed for aluminum:
For aluminum (Al):
- Mass ([tex]\( m \)[/tex]) = [tex]\( 10 \, g \)[/tex]
- Specific heat capacity ([tex]\( C_{Al} \)[/tex]) = [tex]\( 0.900 \, \frac{J}{g \cdot {}^{\circ}C} \)[/tex]
- Temperature change ([tex]\( \Delta T \)[/tex]) = [tex]\( 1^{\circ}C \)[/tex]
Plug these values into the formula:
[tex]\[ Q_{Al} = 10 \, g \cdot 0.900 \, \frac{J}{g \cdot {}^{\circ}C} \cdot 1^{\circ}C = 9.0 \, J \][/tex]
3. Compare the energy needed for iron and aluminum:
The energy required for aluminum is [tex]\( 9.0 \, J \)[/tex], while the energy required for iron is [tex]\( 4.5 \, J \)[/tex]. To compare these amounts, calculate the ratio of the energy required for aluminum to the energy required for iron:
[tex]\[ \text{Ratio} = \frac{Q_{Al}}{Q_{Fe}} = \frac{9.0 \, J}{4.5 \, J} = 2.0 \][/tex]
This means aluminum requires twice as much energy as iron to raise the temperature of the same mass by the same amount. Therefore, we conclude:
Iron needs half as much energy as aluminum.
Answer: Fe needs half as much energy as Al.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.