Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's solve the quadratic equation [tex]\(3x^2 - 5x - 2 = 0\)[/tex] and determine the nature of its solutions.
1. Identify the coefficients: For the given quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex],
- [tex]\(a = 3\)[/tex]
- [tex]\(b = -5\)[/tex]
- [tex]\(c = -2\)[/tex]
2. Calculate the discriminant:
The discriminant ([tex]\(D\)[/tex]) of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ D = b^2 - 4ac \][/tex]
Plugging in the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ D = (-5)^2 - 4(3)(-2) \][/tex]
[tex]\[ D = 25 + 24 \][/tex]
[tex]\[ D = 49 \][/tex]
3. Analyze the discriminant:
The nature of the solutions to the quadratic equation can be determined by the value of the discriminant:
- If [tex]\(D > 0\)[/tex], there are two real and distinct solutions. These solutions will be rational if [tex]\(D\)[/tex] is a perfect square and irrational if [tex]\(D\)[/tex] is not a perfect square.
- If [tex]\(D = 0\)[/tex], there is exactly one real solution.
- If [tex]\(D < 0\)[/tex], there are two complex solutions.
4. Determine the nature of the solutions based on the discriminant value:
In our case, [tex]\(D = 49\)[/tex], which is greater than zero and a perfect square (since [tex]\(49 = 7^2\)[/tex]). Thus, the quadratic equation [tex]\(3x^2 - 5x - 2 = 0\)[/tex] has two real and rational solutions.
Conclusion:
The correct answer is:
- Two rational solutions.
1. Identify the coefficients: For the given quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex],
- [tex]\(a = 3\)[/tex]
- [tex]\(b = -5\)[/tex]
- [tex]\(c = -2\)[/tex]
2. Calculate the discriminant:
The discriminant ([tex]\(D\)[/tex]) of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ D = b^2 - 4ac \][/tex]
Plugging in the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ D = (-5)^2 - 4(3)(-2) \][/tex]
[tex]\[ D = 25 + 24 \][/tex]
[tex]\[ D = 49 \][/tex]
3. Analyze the discriminant:
The nature of the solutions to the quadratic equation can be determined by the value of the discriminant:
- If [tex]\(D > 0\)[/tex], there are two real and distinct solutions. These solutions will be rational if [tex]\(D\)[/tex] is a perfect square and irrational if [tex]\(D\)[/tex] is not a perfect square.
- If [tex]\(D = 0\)[/tex], there is exactly one real solution.
- If [tex]\(D < 0\)[/tex], there are two complex solutions.
4. Determine the nature of the solutions based on the discriminant value:
In our case, [tex]\(D = 49\)[/tex], which is greater than zero and a perfect square (since [tex]\(49 = 7^2\)[/tex]). Thus, the quadratic equation [tex]\(3x^2 - 5x - 2 = 0\)[/tex] has two real and rational solutions.
Conclusion:
The correct answer is:
- Two rational solutions.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.