Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Solve the system of equations.

[tex]\[
\begin{array}{l}
y = 6x - 8 \\
y = 4x + 6
\end{array}
\][/tex]

[tex]\[
x = \ \square
\][/tex]

[tex]\[
y = \ \square
\][/tex]


Sagot :

To solve the system of equations:

[tex]\[ \begin{aligned} y &= 6x - 8 \\ y &= 4x + 6 \end{aligned} \][/tex]

we need to find a common solution [tex]\((x, y)\)[/tex] that satisfies both equations simultaneously.

### Step-by-Step Solution:

1. Set the equations equal to each other:
Since both equations are equal to [tex]\(y\)[/tex], we can set the right-side expressions of both equations equal to each other.

[tex]\[ 6x - 8 = 4x + 6 \][/tex]

2. Isolate the variable [tex]\(x\)[/tex]:
To find the value of [tex]\(x\)[/tex], we start by isolating [tex]\(x\)[/tex] on one side of the equation.

Subtract [tex]\(4x\)[/tex] from both sides:

[tex]\[ 6x - 4x - 8 = 4x - 4x + 6 \\ 2x - 8 = 6 \][/tex]

Then, add 8 to both sides:

[tex]\[ 2x - 8 + 8 = 6 + 8 \\ 2x = 14 \][/tex]

Finally, divide both sides by 2:

[tex]\[ x = \frac{14}{2} = 7 \][/tex]

3. Substitute [tex]\(x = 7\)[/tex] back into one of the original equations:
We can use either equation to find the value of [tex]\(y\)[/tex]. Let's use the first equation:

[tex]\[ y = 6x - 8 \][/tex]

Substitute [tex]\(x = 7\)[/tex]:

[tex]\[ y = 6(7) - 8 \\ y = 42 - 8 \\ y = 34 \][/tex]

So, the solution to the system of equations is:

[tex]\[ x = 7 \][/tex]
[tex]\[ y = 34 \][/tex]