Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Alright, let’s solve this step by step for each case.
### Case 1: [tex]\( M = 13 \text{ kg}, m = 6 \text{ kg}, a = 11.4 \text{ m/s}^2 \)[/tex]
Objective: Calculate the tensions [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex].
1. Determine the tension [tex]\( T_1 \)[/tex] in the string on the [tex]\( M \)[/tex] side:
[tex]\[ T_1 = M \cdot g + M \cdot a \][/tex]
Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 11.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_1 = 13 \cdot 9.8 + 13 \cdot 11.4 \][/tex]
[tex]\[ T_1 = 127.4 + 148.2 \][/tex]
[tex]\[ T_1 = 275.6 \text{ N} \][/tex]
2. Determine the tension [tex]\( T_2 \)[/tex] in the string on the [tex]\( m \)[/tex] side:
[tex]\[ T_2 = m \cdot g - m \cdot a \][/tex]
Given:
[tex]\[ m = 6 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 11.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_2 = 6 \cdot 9.8 - 6 \cdot 11.4 \][/tex]
[tex]\[ T_2 = 58.8 - 68.4 \][/tex]
[tex]\[ T_2 = -9.6 \text{ N} \][/tex]
### Case 2: [tex]\( M = 13 \text{ kg}, m = 9 \text{ kg}, a = 1.4 \text{ m/s}^2 \)[/tex]
Objective: Calculate the tensions [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex].
1. Determine the tension [tex]\( T_1 \)[/tex] in the string on the [tex]\( M \)[/tex] side:
[tex]\[ T_1 = M \cdot g + M \cdot a \][/tex]
Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_1 = 13 \cdot 9.8 + 13 \cdot 1.4 \][/tex]
[tex]\[ T_1 = 127.4 + 18.2 \][/tex]
[tex]\[ T_1 = 145.6 \text{ N} \][/tex]
2. Determine the tension [tex]\( T_2 \)[/tex] in the string on the [tex]\( m \)[/tex] side:
[tex]\[ T_2 = m \cdot g - m \cdot a \][/tex]
Given:
[tex]\[ m = 9 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_2 = 9 \cdot 9.8 - 9 \cdot 1.4 \][/tex]
[tex]\[ T_2 = 88.2 - 12.6 \][/tex]
[tex]\[ T_2 = 75.6 \text{ N} \][/tex]
### Case 3: [tex]\( M = 13 \text{ kg}, m = 12 \text{ kg}, a = ? \)[/tex]
Objective: Calculate the acceleration [tex]\(a\)[/tex].
The acceleration [tex]\( a \)[/tex] can be calculated using the following formula:
[tex]\[ a = \frac{(M - m) \cdot g}{M + m} \][/tex]
Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ m = 12 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = \frac{(13 - 12) \cdot 9.8}{13 + 12} \][/tex]
[tex]\[ a = \frac{1 \cdot 9.8}{25} \][/tex]
[tex]\[ a = \frac{9.8}{25} \][/tex]
[tex]\[ a = 0.392 \text{ m/s}^2 \][/tex]
### Case 4: [tex]\( M = 16 \text{ kg}, m = 12 \text{ kg}, a = ? \)[/tex]
Objective: Calculate the acceleration [tex]\(a\)[/tex].
The acceleration [tex]\( a \)[/tex] can be calculated using the following formula:
[tex]\[ a = \frac{(M - m) \cdot g}{M + m} \][/tex]
Given:
[tex]\[ M = 16 \text{ kg} \][/tex]
[tex]\[ m = 12 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = \frac{(16 - 12) \cdot 9.8}{16 + 12} \][/tex]
[tex]\[ a = \frac{4 \cdot 9.8}{28} \][/tex]
[tex]\[ a = \frac{39.2}{28} \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]
### Summary of Results:
- Case 1: [tex]\( T_1 = 275.6 \, \text{N}, \, T_2 = -9.6 \, \text{N} \)[/tex]
- Case 2: [tex]\( T_1 = 145.6 \, \text{N}, \, T_2 = 75.6 \, \text{N} \)[/tex]
- Case 3: [tex]\( a = 0.392 \, \text{m/s}^2 \)[/tex]
- Case 4: [tex]\( a = 1.4 \, \text{m/s}^2 \)[/tex]
These calculations are directly verifying the dynamics and tension in the system under the given conditions.
### Case 1: [tex]\( M = 13 \text{ kg}, m = 6 \text{ kg}, a = 11.4 \text{ m/s}^2 \)[/tex]
Objective: Calculate the tensions [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex].
1. Determine the tension [tex]\( T_1 \)[/tex] in the string on the [tex]\( M \)[/tex] side:
[tex]\[ T_1 = M \cdot g + M \cdot a \][/tex]
Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 11.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_1 = 13 \cdot 9.8 + 13 \cdot 11.4 \][/tex]
[tex]\[ T_1 = 127.4 + 148.2 \][/tex]
[tex]\[ T_1 = 275.6 \text{ N} \][/tex]
2. Determine the tension [tex]\( T_2 \)[/tex] in the string on the [tex]\( m \)[/tex] side:
[tex]\[ T_2 = m \cdot g - m \cdot a \][/tex]
Given:
[tex]\[ m = 6 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 11.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_2 = 6 \cdot 9.8 - 6 \cdot 11.4 \][/tex]
[tex]\[ T_2 = 58.8 - 68.4 \][/tex]
[tex]\[ T_2 = -9.6 \text{ N} \][/tex]
### Case 2: [tex]\( M = 13 \text{ kg}, m = 9 \text{ kg}, a = 1.4 \text{ m/s}^2 \)[/tex]
Objective: Calculate the tensions [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex].
1. Determine the tension [tex]\( T_1 \)[/tex] in the string on the [tex]\( M \)[/tex] side:
[tex]\[ T_1 = M \cdot g + M \cdot a \][/tex]
Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_1 = 13 \cdot 9.8 + 13 \cdot 1.4 \][/tex]
[tex]\[ T_1 = 127.4 + 18.2 \][/tex]
[tex]\[ T_1 = 145.6 \text{ N} \][/tex]
2. Determine the tension [tex]\( T_2 \)[/tex] in the string on the [tex]\( m \)[/tex] side:
[tex]\[ T_2 = m \cdot g - m \cdot a \][/tex]
Given:
[tex]\[ m = 9 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]
[tex]\[ T_2 = 9 \cdot 9.8 - 9 \cdot 1.4 \][/tex]
[tex]\[ T_2 = 88.2 - 12.6 \][/tex]
[tex]\[ T_2 = 75.6 \text{ N} \][/tex]
### Case 3: [tex]\( M = 13 \text{ kg}, m = 12 \text{ kg}, a = ? \)[/tex]
Objective: Calculate the acceleration [tex]\(a\)[/tex].
The acceleration [tex]\( a \)[/tex] can be calculated using the following formula:
[tex]\[ a = \frac{(M - m) \cdot g}{M + m} \][/tex]
Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ m = 12 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = \frac{(13 - 12) \cdot 9.8}{13 + 12} \][/tex]
[tex]\[ a = \frac{1 \cdot 9.8}{25} \][/tex]
[tex]\[ a = \frac{9.8}{25} \][/tex]
[tex]\[ a = 0.392 \text{ m/s}^2 \][/tex]
### Case 4: [tex]\( M = 16 \text{ kg}, m = 12 \text{ kg}, a = ? \)[/tex]
Objective: Calculate the acceleration [tex]\(a\)[/tex].
The acceleration [tex]\( a \)[/tex] can be calculated using the following formula:
[tex]\[ a = \frac{(M - m) \cdot g}{M + m} \][/tex]
Given:
[tex]\[ M = 16 \text{ kg} \][/tex]
[tex]\[ m = 12 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = \frac{(16 - 12) \cdot 9.8}{16 + 12} \][/tex]
[tex]\[ a = \frac{4 \cdot 9.8}{28} \][/tex]
[tex]\[ a = \frac{39.2}{28} \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]
### Summary of Results:
- Case 1: [tex]\( T_1 = 275.6 \, \text{N}, \, T_2 = -9.6 \, \text{N} \)[/tex]
- Case 2: [tex]\( T_1 = 145.6 \, \text{N}, \, T_2 = 75.6 \, \text{N} \)[/tex]
- Case 3: [tex]\( a = 0.392 \, \text{m/s}^2 \)[/tex]
- Case 4: [tex]\( a = 1.4 \, \text{m/s}^2 \)[/tex]
These calculations are directly verifying the dynamics and tension in the system under the given conditions.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.