Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

A system is released as shown. Neglect drag, friction, and the mass of the string and pulley.

Calculate the unknown(s) in each of the following cases:

| M (kg) | m (kg) | a (m/s²) |
|--------|--------|----------|
| 13 | 6 | 11.4 |
| 13 | 9 | 1.4 |
| 13 | 12 | ? |
| 16 | 12 | ? |


Sagot :

Alright, let’s solve this step by step for each case.

### Case 1: [tex]\( M = 13 \text{ kg}, m = 6 \text{ kg}, a = 11.4 \text{ m/s}^2 \)[/tex]

Objective: Calculate the tensions [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex].

1. Determine the tension [tex]\( T_1 \)[/tex] in the string on the [tex]\( M \)[/tex] side:

[tex]\[ T_1 = M \cdot g + M \cdot a \][/tex]

Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 11.4 \text{ m/s}^2 \][/tex]

[tex]\[ T_1 = 13 \cdot 9.8 + 13 \cdot 11.4 \][/tex]
[tex]\[ T_1 = 127.4 + 148.2 \][/tex]
[tex]\[ T_1 = 275.6 \text{ N} \][/tex]

2. Determine the tension [tex]\( T_2 \)[/tex] in the string on the [tex]\( m \)[/tex] side:

[tex]\[ T_2 = m \cdot g - m \cdot a \][/tex]

Given:
[tex]\[ m = 6 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 11.4 \text{ m/s}^2 \][/tex]

[tex]\[ T_2 = 6 \cdot 9.8 - 6 \cdot 11.4 \][/tex]
[tex]\[ T_2 = 58.8 - 68.4 \][/tex]
[tex]\[ T_2 = -9.6 \text{ N} \][/tex]

### Case 2: [tex]\( M = 13 \text{ kg}, m = 9 \text{ kg}, a = 1.4 \text{ m/s}^2 \)[/tex]

Objective: Calculate the tensions [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex].

1. Determine the tension [tex]\( T_1 \)[/tex] in the string on the [tex]\( M \)[/tex] side:

[tex]\[ T_1 = M \cdot g + M \cdot a \][/tex]

Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]

[tex]\[ T_1 = 13 \cdot 9.8 + 13 \cdot 1.4 \][/tex]
[tex]\[ T_1 = 127.4 + 18.2 \][/tex]
[tex]\[ T_1 = 145.6 \text{ N} \][/tex]

2. Determine the tension [tex]\( T_2 \)[/tex] in the string on the [tex]\( m \)[/tex] side:

[tex]\[ T_2 = m \cdot g - m \cdot a \][/tex]

Given:
[tex]\[ m = 9 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]

[tex]\[ T_2 = 9 \cdot 9.8 - 9 \cdot 1.4 \][/tex]
[tex]\[ T_2 = 88.2 - 12.6 \][/tex]
[tex]\[ T_2 = 75.6 \text{ N} \][/tex]

### Case 3: [tex]\( M = 13 \text{ kg}, m = 12 \text{ kg}, a = ? \)[/tex]

Objective: Calculate the acceleration [tex]\(a\)[/tex].

The acceleration [tex]\( a \)[/tex] can be calculated using the following formula:

[tex]\[ a = \frac{(M - m) \cdot g}{M + m} \][/tex]

Given:
[tex]\[ M = 13 \text{ kg} \][/tex]
[tex]\[ m = 12 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]

[tex]\[ a = \frac{(13 - 12) \cdot 9.8}{13 + 12} \][/tex]
[tex]\[ a = \frac{1 \cdot 9.8}{25} \][/tex]
[tex]\[ a = \frac{9.8}{25} \][/tex]
[tex]\[ a = 0.392 \text{ m/s}^2 \][/tex]

### Case 4: [tex]\( M = 16 \text{ kg}, m = 12 \text{ kg}, a = ? \)[/tex]

Objective: Calculate the acceleration [tex]\(a\)[/tex].

The acceleration [tex]\( a \)[/tex] can be calculated using the following formula:

[tex]\[ a = \frac{(M - m) \cdot g}{M + m} \][/tex]

Given:
[tex]\[ M = 16 \text{ kg} \][/tex]
[tex]\[ m = 12 \text{ kg} \][/tex]
[tex]\[ g = 9.8 \text{ m/s}^2 \][/tex]

[tex]\[ a = \frac{(16 - 12) \cdot 9.8}{16 + 12} \][/tex]
[tex]\[ a = \frac{4 \cdot 9.8}{28} \][/tex]
[tex]\[ a = \frac{39.2}{28} \][/tex]
[tex]\[ a = 1.4 \text{ m/s}^2 \][/tex]

### Summary of Results:
- Case 1: [tex]\( T_1 = 275.6 \, \text{N}, \, T_2 = -9.6 \, \text{N} \)[/tex]
- Case 2: [tex]\( T_1 = 145.6 \, \text{N}, \, T_2 = 75.6 \, \text{N} \)[/tex]
- Case 3: [tex]\( a = 0.392 \, \text{m/s}^2 \)[/tex]
- Case 4: [tex]\( a = 1.4 \, \text{m/s}^2 \)[/tex]

These calculations are directly verifying the dynamics and tension in the system under the given conditions.