Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Arrange the tiles on both boards to model the equation.

Use the algebra tiles tool to model the equation [tex]\( 5x + (-6) = 6x + 4 \)[/tex]. Check all that apply:

- 5 negative [tex]\( x \)[/tex]-tiles on the left
- 6 positive [tex]\( x \)[/tex]-tiles on the right
- 4 positive unit tiles on the right
- 6 negative [tex]\( x \)[/tex]-tiles on the right
- 6 negative unit tiles on the left


Sagot :

To model the equation [tex]\(5x + (-6) = 6x + 4\)[/tex] using algebra tiles, we need to arrange the appropriate number and type of tiles on both sides of the equation.

Here's how we can do it step-by-step:

1. Identify the terms on both sides of the equation:
- On the left side: [tex]\(5x\)[/tex] and [tex]\(-6\)[/tex]
- On the right side: [tex]\(6x\)[/tex] and [tex]\(4\)[/tex]

2. Model the left side of the equation:
- 5 negative [tex]\(x\)[/tex] tiles on the left: We need 5 negative [tex]\(x\)[/tex] tiles to represent [tex]\(5x\)[/tex] on the left side. Each tile corresponds to [tex]\(-x\)[/tex], so to have 5 negative [tex]\(x\)[/tex] tiles, we write this as 5 positive [tex]\(x\)[/tex] tiles visually but conceptually as [tex]\(5x\)[/tex].

- 6 negative unit tiles on the left: We need 6 negative unit tiles to represent [tex]\(-6\)[/tex].

3. Model the right side of the equation:
- 6 positive [tex]\(x\)[/tex] tiles on the right: We need 6 positive [tex]\(x\)[/tex] tiles to represent [tex]\(6x\)[/tex].

- 4 positive unit tiles on the right: We need 4 positive unit tiles to represent [tex]\(4\)[/tex].

4. Check which tiles we need:
- 5 negative [tex]\(x\)[/tex] tiles on the left: Yes, needed to represent [tex]\(5x\)[/tex].
- 6 positive [tex]\(x\)[/tex] tiles on the right: Yes, needed to represent [tex]\(6x\)[/tex].
- 4 positive unit tiles on the right: Yes, needed to represent [tex]\(4\)[/tex].
- 6 negative [tex]\(x\)[/tex] tiles on the right: No, not needed, it would incorrectly add [tex]\(-6x\)[/tex] to the right side.
- 6 negative unit tiles on the left: No, they are on the right side and we only need 4 of them.

So, we conclude that the needed items to model this equation and make the board sum to 0 are:
- 5 negative [tex]\(x\)[/tex] tiles on the left
- 6 positive [tex]\(x\)[/tex] tiles on the right
- 4 positive unit tiles on the right

Thus, the correct items are:
- 5 negative [tex]\(x\)[/tex] tiles on the left
- 6 positive [tex]\(x\)[/tex] tiles on the right
- 4 positive unit tiles on the right

Items that are not needed:
- 6 negative [tex]\(x\)[/tex] tiles on the right
- 6 negative unit tiles on the left

Therefore, the true selections are:
- 5 negative [tex]\(x\)[/tex] tiles on the left
- 6 positive [tex]\(x\)[/tex] tiles on the right
- 4 positive unit tiles on the right