Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the problem step by step:
i) Find the temperature of the room.
We are given:
- Initial temperature of the body, [tex]\( T_{\text{initial}} = 40 \)[/tex]°C
- Temperature after 5.0 minutes, [tex]\( T_{\text{final}} = 30 \)[/tex]°C
- Cooling constant, [tex]\( k = 0.02 \)[/tex] W/m²K
- Initial time, [tex]\( t_{\text{initial}} = 5.0 \)[/tex] minutes
Using Newton's Law of Cooling, the temperature of the body as a function of time is given by:
[tex]\[ T(t) = T_{\text{room}} + (T_{\text{initial}} - T_{\text{room}}) \cdot e^{-kt} \][/tex]
From the formula, after 5.0 minutes:
[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot e^{-0.02 \cdot 5} \][/tex]
Simplifying the equation, we have:
[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot e^{-0.1} \][/tex]
Let [tex]\( e^{-0.1} \approx 0.9048 \)[/tex]:
[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot 0.9048 \][/tex]
[tex]\[ 30 = T_{\text{room}} + 36.192 - 0.9048 T_{\text{room}} \][/tex]
Combining like terms:
[tex]\[ 30 = 36.192 - 0.9048 T_{\text{room}} + T_{\text{room}} \][/tex]
[tex]\[ 30 = 36.192 + 0.0952 T_{\text{room}} \][/tex]
Rearranging to solve for [tex]\( T_{\text{room}} \)[/tex]:
[tex]\[ 0.0952 T_{\text{room}} = 30 - 36.192 \][/tex]
[tex]\[ 0.0952 T_{\text{room}} = -6.192 \][/tex]
[tex]\[ T_{\text{room}} = \frac{-6.192}{0.0952} \][/tex]
[tex]\[ T_{\text{room}} = 485.41659723875216 \text{°C} \][/tex]
Thus, the temperature of the room is approximately 485.42°C.
ii) What will be the temperature of the body after 15.0 minutes from the initial process?
We need to find the temperature of the body, [tex]\( T(15) \)[/tex], after 15.0 minutes.
We use the same cooling formula:
[tex]\[ T(t) = T_{\text{room}} + (T_{\text{initial}} - T_{\text{room}}) \cdot e^{-kt} \][/tex]
Plugging in the values for [tex]\( t = 15 \)[/tex] minutes:
[tex]\[ T(15) = 485.41659723875216 + (40 - 485.41659723875216) \cdot e^{-0.02 \cdot 15} \][/tex]
Simplifying:
[tex]\[ T(15) = 485.41659723875216 + (-445.41659723875216) \cdot e^{-0.3} \][/tex]
Let [tex]\( e^{-0.3} \approx 0.7408 \)[/tex]:
[tex]\[ T(15) = 485.41659723875216 + (-445.41659723875216) \cdot 0.7408 \][/tex]
[tex]\[ T(15) = 485.41659723875216 - 329.97273102851773 \][/tex]
[tex]\[ T(15) = 155.44386621023443 \text{°C} \][/tex]
Thus, the temperature of the body after 15.0 minutes from the initial process is approximately 155.44°C.
i) Find the temperature of the room.
We are given:
- Initial temperature of the body, [tex]\( T_{\text{initial}} = 40 \)[/tex]°C
- Temperature after 5.0 minutes, [tex]\( T_{\text{final}} = 30 \)[/tex]°C
- Cooling constant, [tex]\( k = 0.02 \)[/tex] W/m²K
- Initial time, [tex]\( t_{\text{initial}} = 5.0 \)[/tex] minutes
Using Newton's Law of Cooling, the temperature of the body as a function of time is given by:
[tex]\[ T(t) = T_{\text{room}} + (T_{\text{initial}} - T_{\text{room}}) \cdot e^{-kt} \][/tex]
From the formula, after 5.0 minutes:
[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot e^{-0.02 \cdot 5} \][/tex]
Simplifying the equation, we have:
[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot e^{-0.1} \][/tex]
Let [tex]\( e^{-0.1} \approx 0.9048 \)[/tex]:
[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot 0.9048 \][/tex]
[tex]\[ 30 = T_{\text{room}} + 36.192 - 0.9048 T_{\text{room}} \][/tex]
Combining like terms:
[tex]\[ 30 = 36.192 - 0.9048 T_{\text{room}} + T_{\text{room}} \][/tex]
[tex]\[ 30 = 36.192 + 0.0952 T_{\text{room}} \][/tex]
Rearranging to solve for [tex]\( T_{\text{room}} \)[/tex]:
[tex]\[ 0.0952 T_{\text{room}} = 30 - 36.192 \][/tex]
[tex]\[ 0.0952 T_{\text{room}} = -6.192 \][/tex]
[tex]\[ T_{\text{room}} = \frac{-6.192}{0.0952} \][/tex]
[tex]\[ T_{\text{room}} = 485.41659723875216 \text{°C} \][/tex]
Thus, the temperature of the room is approximately 485.42°C.
ii) What will be the temperature of the body after 15.0 minutes from the initial process?
We need to find the temperature of the body, [tex]\( T(15) \)[/tex], after 15.0 minutes.
We use the same cooling formula:
[tex]\[ T(t) = T_{\text{room}} + (T_{\text{initial}} - T_{\text{room}}) \cdot e^{-kt} \][/tex]
Plugging in the values for [tex]\( t = 15 \)[/tex] minutes:
[tex]\[ T(15) = 485.41659723875216 + (40 - 485.41659723875216) \cdot e^{-0.02 \cdot 15} \][/tex]
Simplifying:
[tex]\[ T(15) = 485.41659723875216 + (-445.41659723875216) \cdot e^{-0.3} \][/tex]
Let [tex]\( e^{-0.3} \approx 0.7408 \)[/tex]:
[tex]\[ T(15) = 485.41659723875216 + (-445.41659723875216) \cdot 0.7408 \][/tex]
[tex]\[ T(15) = 485.41659723875216 - 329.97273102851773 \][/tex]
[tex]\[ T(15) = 155.44386621023443 \text{°C} \][/tex]
Thus, the temperature of the body after 15.0 minutes from the initial process is approximately 155.44°C.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.