Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve the problem step by step:
i) Find the temperature of the room.
We are given:
- Initial temperature of the body, [tex]\( T_{\text{initial}} = 40 \)[/tex]°C
- Temperature after 5.0 minutes, [tex]\( T_{\text{final}} = 30 \)[/tex]°C
- Cooling constant, [tex]\( k = 0.02 \)[/tex] W/m²K
- Initial time, [tex]\( t_{\text{initial}} = 5.0 \)[/tex] minutes
Using Newton's Law of Cooling, the temperature of the body as a function of time is given by:
[tex]\[ T(t) = T_{\text{room}} + (T_{\text{initial}} - T_{\text{room}}) \cdot e^{-kt} \][/tex]
From the formula, after 5.0 minutes:
[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot e^{-0.02 \cdot 5} \][/tex]
Simplifying the equation, we have:
[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot e^{-0.1} \][/tex]
Let [tex]\( e^{-0.1} \approx 0.9048 \)[/tex]:
[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot 0.9048 \][/tex]
[tex]\[ 30 = T_{\text{room}} + 36.192 - 0.9048 T_{\text{room}} \][/tex]
Combining like terms:
[tex]\[ 30 = 36.192 - 0.9048 T_{\text{room}} + T_{\text{room}} \][/tex]
[tex]\[ 30 = 36.192 + 0.0952 T_{\text{room}} \][/tex]
Rearranging to solve for [tex]\( T_{\text{room}} \)[/tex]:
[tex]\[ 0.0952 T_{\text{room}} = 30 - 36.192 \][/tex]
[tex]\[ 0.0952 T_{\text{room}} = -6.192 \][/tex]
[tex]\[ T_{\text{room}} = \frac{-6.192}{0.0952} \][/tex]
[tex]\[ T_{\text{room}} = 485.41659723875216 \text{°C} \][/tex]
Thus, the temperature of the room is approximately 485.42°C.
ii) What will be the temperature of the body after 15.0 minutes from the initial process?
We need to find the temperature of the body, [tex]\( T(15) \)[/tex], after 15.0 minutes.
We use the same cooling formula:
[tex]\[ T(t) = T_{\text{room}} + (T_{\text{initial}} - T_{\text{room}}) \cdot e^{-kt} \][/tex]
Plugging in the values for [tex]\( t = 15 \)[/tex] minutes:
[tex]\[ T(15) = 485.41659723875216 + (40 - 485.41659723875216) \cdot e^{-0.02 \cdot 15} \][/tex]
Simplifying:
[tex]\[ T(15) = 485.41659723875216 + (-445.41659723875216) \cdot e^{-0.3} \][/tex]
Let [tex]\( e^{-0.3} \approx 0.7408 \)[/tex]:
[tex]\[ T(15) = 485.41659723875216 + (-445.41659723875216) \cdot 0.7408 \][/tex]
[tex]\[ T(15) = 485.41659723875216 - 329.97273102851773 \][/tex]
[tex]\[ T(15) = 155.44386621023443 \text{°C} \][/tex]
Thus, the temperature of the body after 15.0 minutes from the initial process is approximately 155.44°C.
i) Find the temperature of the room.
We are given:
- Initial temperature of the body, [tex]\( T_{\text{initial}} = 40 \)[/tex]°C
- Temperature after 5.0 minutes, [tex]\( T_{\text{final}} = 30 \)[/tex]°C
- Cooling constant, [tex]\( k = 0.02 \)[/tex] W/m²K
- Initial time, [tex]\( t_{\text{initial}} = 5.0 \)[/tex] minutes
Using Newton's Law of Cooling, the temperature of the body as a function of time is given by:
[tex]\[ T(t) = T_{\text{room}} + (T_{\text{initial}} - T_{\text{room}}) \cdot e^{-kt} \][/tex]
From the formula, after 5.0 minutes:
[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot e^{-0.02 \cdot 5} \][/tex]
Simplifying the equation, we have:
[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot e^{-0.1} \][/tex]
Let [tex]\( e^{-0.1} \approx 0.9048 \)[/tex]:
[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot 0.9048 \][/tex]
[tex]\[ 30 = T_{\text{room}} + 36.192 - 0.9048 T_{\text{room}} \][/tex]
Combining like terms:
[tex]\[ 30 = 36.192 - 0.9048 T_{\text{room}} + T_{\text{room}} \][/tex]
[tex]\[ 30 = 36.192 + 0.0952 T_{\text{room}} \][/tex]
Rearranging to solve for [tex]\( T_{\text{room}} \)[/tex]:
[tex]\[ 0.0952 T_{\text{room}} = 30 - 36.192 \][/tex]
[tex]\[ 0.0952 T_{\text{room}} = -6.192 \][/tex]
[tex]\[ T_{\text{room}} = \frac{-6.192}{0.0952} \][/tex]
[tex]\[ T_{\text{room}} = 485.41659723875216 \text{°C} \][/tex]
Thus, the temperature of the room is approximately 485.42°C.
ii) What will be the temperature of the body after 15.0 minutes from the initial process?
We need to find the temperature of the body, [tex]\( T(15) \)[/tex], after 15.0 minutes.
We use the same cooling formula:
[tex]\[ T(t) = T_{\text{room}} + (T_{\text{initial}} - T_{\text{room}}) \cdot e^{-kt} \][/tex]
Plugging in the values for [tex]\( t = 15 \)[/tex] minutes:
[tex]\[ T(15) = 485.41659723875216 + (40 - 485.41659723875216) \cdot e^{-0.02 \cdot 15} \][/tex]
Simplifying:
[tex]\[ T(15) = 485.41659723875216 + (-445.41659723875216) \cdot e^{-0.3} \][/tex]
Let [tex]\( e^{-0.3} \approx 0.7408 \)[/tex]:
[tex]\[ T(15) = 485.41659723875216 + (-445.41659723875216) \cdot 0.7408 \][/tex]
[tex]\[ T(15) = 485.41659723875216 - 329.97273102851773 \][/tex]
[tex]\[ T(15) = 155.44386621023443 \text{°C} \][/tex]
Thus, the temperature of the body after 15.0 minutes from the initial process is approximately 155.44°C.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.