Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

A body cools from 40°C to 30°C in 5.0 minutes, with a cooling constant of 0.02 W/m·K.

i) Find the temperature of the room.
ii) What will be the temperature of the body after 15.0 minutes from the initial process?

Sagot :

Let's solve the problem step by step:

i) Find the temperature of the room.

We are given:
- Initial temperature of the body, [tex]\( T_{\text{initial}} = 40 \)[/tex]°C
- Temperature after 5.0 minutes, [tex]\( T_{\text{final}} = 30 \)[/tex]°C
- Cooling constant, [tex]\( k = 0.02 \)[/tex] W/m²K
- Initial time, [tex]\( t_{\text{initial}} = 5.0 \)[/tex] minutes

Using Newton's Law of Cooling, the temperature of the body as a function of time is given by:

[tex]\[ T(t) = T_{\text{room}} + (T_{\text{initial}} - T_{\text{room}}) \cdot e^{-kt} \][/tex]

From the formula, after 5.0 minutes:

[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot e^{-0.02 \cdot 5} \][/tex]

Simplifying the equation, we have:

[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot e^{-0.1} \][/tex]

Let [tex]\( e^{-0.1} \approx 0.9048 \)[/tex]:

[tex]\[ 30 = T_{\text{room}} + (40 - T_{\text{room}}) \cdot 0.9048 \][/tex]

[tex]\[ 30 = T_{\text{room}} + 36.192 - 0.9048 T_{\text{room}} \][/tex]

Combining like terms:

[tex]\[ 30 = 36.192 - 0.9048 T_{\text{room}} + T_{\text{room}} \][/tex]

[tex]\[ 30 = 36.192 + 0.0952 T_{\text{room}} \][/tex]

Rearranging to solve for [tex]\( T_{\text{room}} \)[/tex]:

[tex]\[ 0.0952 T_{\text{room}} = 30 - 36.192 \][/tex]

[tex]\[ 0.0952 T_{\text{room}} = -6.192 \][/tex]

[tex]\[ T_{\text{room}} = \frac{-6.192}{0.0952} \][/tex]

[tex]\[ T_{\text{room}} = 485.41659723875216 \text{°C} \][/tex]

Thus, the temperature of the room is approximately 485.42°C.

ii) What will be the temperature of the body after 15.0 minutes from the initial process?

We need to find the temperature of the body, [tex]\( T(15) \)[/tex], after 15.0 minutes.

We use the same cooling formula:

[tex]\[ T(t) = T_{\text{room}} + (T_{\text{initial}} - T_{\text{room}}) \cdot e^{-kt} \][/tex]

Plugging in the values for [tex]\( t = 15 \)[/tex] minutes:

[tex]\[ T(15) = 485.41659723875216 + (40 - 485.41659723875216) \cdot e^{-0.02 \cdot 15} \][/tex]

Simplifying:

[tex]\[ T(15) = 485.41659723875216 + (-445.41659723875216) \cdot e^{-0.3} \][/tex]

Let [tex]\( e^{-0.3} \approx 0.7408 \)[/tex]:

[tex]\[ T(15) = 485.41659723875216 + (-445.41659723875216) \cdot 0.7408 \][/tex]

[tex]\[ T(15) = 485.41659723875216 - 329.97273102851773 \][/tex]

[tex]\[ T(15) = 155.44386621023443 \text{°C} \][/tex]

Thus, the temperature of the body after 15.0 minutes from the initial process is approximately 155.44°C.