Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the value of [tex]\( x \)[/tex] using algebra tiles to solve the equation [tex]\( x + 1 = -x + (-5) \)[/tex], we will proceed step-by-step.
### Step 1: Setup the Equation with Algebra Tiles
- On the left side of the equation, we have [tex]\( x + 1 \)[/tex].
- On the right side, we have [tex]\( -x + (-5) \)[/tex].
### Step 2: Combine Like Terms
The goal is to isolate the variable [tex]\( x \)[/tex]. We can start by adding [tex]\( x \)[/tex] to both sides of the equation to eliminate [tex]\( -x \)[/tex] from the right side.
So,
[tex]\[ x + x + 1 = -x + x + (-5) \][/tex]
This simplifies to:
[tex]\[ 2x + 1 = -5 \][/tex]
### Step 3: Isolate the Variable [tex]\( x \)[/tex]
Next, we need to isolate [tex]\( 2x \)[/tex]. Subtract 1 from both sides of the equation:
[tex]\[ 2x + 1 - 1 = -5 - 1 \][/tex]
This simplifies to:
[tex]\[ 2x = -6 \][/tex]
### Step 4: Solve for [tex]\( x \)[/tex]
Finally, divide both sides by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{2x}{2} = \frac{-6}{2} \][/tex]
This simplifies to:
[tex]\[ x = -3 \][/tex]
### Conclusion
So, the value of [tex]\( x \)[/tex] when using algebra tiles to solve the equation [tex]\( x + 1 = -x + (-5) \)[/tex] is [tex]\(\boxed{-3}\)[/tex].
This solution matches with one of our given choices:
- [tex]\( x = -1 \)[/tex]
- [tex]\( x = 1 \)[/tex]
- [tex]\( x = 2 \)[/tex]
- [tex]\( x = -3 \)[/tex]
### Step 1: Setup the Equation with Algebra Tiles
- On the left side of the equation, we have [tex]\( x + 1 \)[/tex].
- On the right side, we have [tex]\( -x + (-5) \)[/tex].
### Step 2: Combine Like Terms
The goal is to isolate the variable [tex]\( x \)[/tex]. We can start by adding [tex]\( x \)[/tex] to both sides of the equation to eliminate [tex]\( -x \)[/tex] from the right side.
So,
[tex]\[ x + x + 1 = -x + x + (-5) \][/tex]
This simplifies to:
[tex]\[ 2x + 1 = -5 \][/tex]
### Step 3: Isolate the Variable [tex]\( x \)[/tex]
Next, we need to isolate [tex]\( 2x \)[/tex]. Subtract 1 from both sides of the equation:
[tex]\[ 2x + 1 - 1 = -5 - 1 \][/tex]
This simplifies to:
[tex]\[ 2x = -6 \][/tex]
### Step 4: Solve for [tex]\( x \)[/tex]
Finally, divide both sides by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{2x}{2} = \frac{-6}{2} \][/tex]
This simplifies to:
[tex]\[ x = -3 \][/tex]
### Conclusion
So, the value of [tex]\( x \)[/tex] when using algebra tiles to solve the equation [tex]\( x + 1 = -x + (-5) \)[/tex] is [tex]\(\boxed{-3}\)[/tex].
This solution matches with one of our given choices:
- [tex]\( x = -1 \)[/tex]
- [tex]\( x = 1 \)[/tex]
- [tex]\( x = 2 \)[/tex]
- [tex]\( x = -3 \)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.