Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's solve this step by step.
1. Convert the given equation to slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ 3x + 2y = 8 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ 2y = -3x + 8 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 4 \][/tex]
The slope ([tex]\( m \)[/tex]) of the given line is [tex]\( -\frac{3}{2} \)[/tex].
2. Identify the slope of the parallel line:
For the line to be parallel, it must have the same slope as the given line, which is [tex]\( -\frac{3}{2} \)[/tex].
3. Determine the equation of the line passing through the point (-2, 5):
Use the point-slope form of the equation [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is the given point (-2, 5).
Substitute [tex]\( m = -\frac{3}{2} \)[/tex], [tex]\( x_1 = -2 \)[/tex], and [tex]\( y_1 = 5 \)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}(x + 2) \][/tex]
4. Simplify the equation:
[tex]\[ y - 5 = -\frac{3}{2}x - 3 \][/tex]
Add 5 to both sides:
[tex]\[ y = -\frac{3}{2}x - 3 + 5 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]
So, the equation [tex]\( y = -\frac{3}{2}x + 2 \)[/tex] represents the line parallel to the given equation and passes through the point [tex]\((-2,5)\)[/tex].
Thus, the correct answers for the equation are:
- [tex]\( y = \boxed{-\frac{3}{2}} \)[/tex] [tex]\( x + \boxed{2} \)[/tex].
1. Convert the given equation to slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ 3x + 2y = 8 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ 2y = -3x + 8 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 4 \][/tex]
The slope ([tex]\( m \)[/tex]) of the given line is [tex]\( -\frac{3}{2} \)[/tex].
2. Identify the slope of the parallel line:
For the line to be parallel, it must have the same slope as the given line, which is [tex]\( -\frac{3}{2} \)[/tex].
3. Determine the equation of the line passing through the point (-2, 5):
Use the point-slope form of the equation [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is the given point (-2, 5).
Substitute [tex]\( m = -\frac{3}{2} \)[/tex], [tex]\( x_1 = -2 \)[/tex], and [tex]\( y_1 = 5 \)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}(x + 2) \][/tex]
4. Simplify the equation:
[tex]\[ y - 5 = -\frac{3}{2}x - 3 \][/tex]
Add 5 to both sides:
[tex]\[ y = -\frac{3}{2}x - 3 + 5 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]
So, the equation [tex]\( y = -\frac{3}{2}x + 2 \)[/tex] represents the line parallel to the given equation and passes through the point [tex]\((-2,5)\)[/tex].
Thus, the correct answers for the equation are:
- [tex]\( y = \boxed{-\frac{3}{2}} \)[/tex] [tex]\( x + \boxed{2} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.